
SHORT-TIME INSTANTANEOUS FREQUENCY AND BANDWIDTH FEATURES FOR
SPEECH RECOGNITION

Pirros Tsiakoulis1, Alexandros Potamianos2 and Dimitrios Dimitriadis1

1School of Electrical and Computer Engineering, National Technical University of Athens, Greece
2Dept. of Electronics and Computer Engineering, Technical University of Crete, Chania, Greece

ptsiak@ilsp.gr,potam@telecom.tuc.gr,ddim@cs.ntua.gr

ABSTRACT

In this paper, we investigate the performance of modulation related
features and normalized spectral moments for automatic speech
recognition. We focus on the short-time averages of the amplitude
weighted instantaneous frequencies and bandwidths, computed at
each subband of a mel-spaced filterbank. Similar features have been
proposed in previous studies, and have been successfully combined
with MFCCs for speech and speaker recognition. Our goal is to
investigate the stand-alone performance of these features. First, it
is experimentally shown that the proposed features are only mod-
erately correlated in the frequency domain, and, unlike MFCCs,
they do not require a transformation to the cepstral domain. Next,
the filterbank parameters (number of filters and filter overlap) are
investigated for the proposed features and compared with those of
MFCCs. Results show that frequency related features perform at
least as well as MFCCs for clean conditions, and yield superior
results for noisy conditions; up to 50% relative error rate reduction
for the AURORA3 Spanish task.

Index Terms— AM–FM, modulations, speech recognition, in-
stantaneous frequency, instantaneous bandwidth, filterbank overlap

1. INTRODUCTION

Time-frequency distributions and non-linear speech models have
been successfully used as feature extraction tools for robust speech
recognition [1, 2, 3]. In this paper we examine modulation related
features extracted via the nonlinear AM–FM speech model, using
a mel-spaced Gabor filterbank. Short-time amplitude, frequency,
and bandwidth related features are estimated and evaluated in the
context of both clean and noisy speech recognition.

The AM–FM model has been successfully applied in various ar-
eas of signal processing including speech, music and image process-
ing. Specifically in speech processing, the AM–FM model has been
used for speech analysis and modeling [4, 5], speech synthesis [4],
speech recognition [2], and speaker identification [6, 7]. Significant
improvement in speech recognition accuracy has been shown in [2],
where amplitude and frequency modulation related features are in-
cluded in the speech recognition front-end, especially for noisy con-
ditions. A frequency domain alternative of instantaneous frequency,
namely the first normalized spectral moment, has also been explored
for speech recognition [1, 3], whereas bandwidth related features are
considered to carry less beneficial phonetic information.
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In this paper, we investigate the stand-alone performance of
short-time averages of the amplitude weighted instantaneous fre-
quencies and bandwidths. As far as the bandwidth is concerned
we examine the recognition performance of both its amplitude and
frequency components [8], jointly as well as independently. We also
investigate the filterbank parametrization as well as decorrelation
techniques for the frequency and bandwidth front-ends.

The rest of the paper is organized as follows. In Section 2
we outline the methodology for the feature extraction, where we
address both the AM-FM implementation as well as the spectral
moment counterpart. Next, in Section 3 investigate the filterbank
parametrization, and decorrelation techniques for the frequency and
bandwidth front-ends. Finally, in Section 4 we present the recog-
nition results for both clean and noisy speech, based on which we
conclude the paper.

2. AMPLITUDE, FREQUENCY AND BANDWIDTH
ESTIMATES

The AM–FM model is a nonlinear model that describes a speech
resonance as a signal with a combined amplitude modulation (AM)
and frequency modulation (FM) structure [9]

r(t) = a(t) cos(2π[fct +

∫ t

0

q(τ)dτ ] + θ) (1)

where fc is the “center value” of the formant frequency, q(t) is the
frequency modulating signal, and a(t) is the time-varying amplitude.
The instantaneous frequency signal is defined as f(t) = fc + q(t).
The speech signal s(t) is modeled as the sum s(t) =

∑K
k=1 rk(t)

of K such AM–FM signals.
The estimation of the amplitude and frequency components,

namely the demodulation of each resonant signal, can be done with
the energy separation algorithm (ESA), or utilizing the Hilbert
transform demodulation (HTD) algorithm. ESA exploits the differ-
ential Teager–Kaiser Energy Operator (TEO), in order to estimate
the amplitude envelope |a(t)| and instantaneous frequency f(t) sig-
nals of the speech resonance signal r(t) [9, 10]. The energy operator
tracks the energy of the source producing an oscillation signal r(t)
and is defined as Ψ[r(t)] = [ṙ(t)]2−r(t)r̈(t) where ṙ(t) = dr/dt1.

According to the ESA the frequency and amplitude estimates are
respectively [9]

1

2π

√
Ψ[ṙ(t)]

Ψ[r(t)]
≈ f(t) ,

Ψ[r(t)]√
Ψ[ṙ(t)]

≈ |a(t)|. (2)

1A detailed study of the behavior of the TEO can be found in [11]



Usually the discrete time (DESA2) counterparts are used, which
are defined by similar equations, using the discrete energy operator
Ψd[r[n]] = r2[n]− r[n + 1]r[n− 1].

For the purpose of the feature extraction process, a multiband
demodulation analysis (MDA) is performed [8]. The speech signal
is decomposed into resonant signals using a mel-spaced Gabor filter-
bank. The raw instantaneous frequency (f(t)) and amplitude (|a(t)|)
signals are estimated by demodulating each resonant signal. Next a
short-time analysis is performed, where the instantaneous envelope
is averaged and log compressed A = log(

∫ t0+T

t0
[a(t)]2dt), whereas

for the frequency estimation an amplitude weighting is performed
[8]

Fw =

∫ t0+T

t0
f(t)[a(t)]2dt

∫ t0+T

t0
[a(t)]2dt

(3)

For the bandwidth estimation both frequency and amplitude
components are considered, and similar weighting with the squared
amplitude is also applied

[Bw]2 =

∫ t0+T

t0

[
(ȧ(t)/2π)2 + (f(t)− Fu)2[a(t)]2

]
dt

∫ t0+T

t0
[a(t)]2dt

(4)

The amplitude component is considered by the term (ȧ(t)/2π)2,
which describes the rate of decay of the amplitude envelope, and
is closely related to the formants’ bandwidths. In order to explore
the relative importance of the two components, we consider these
two components separately as follows

[Bf
w]2 =

∫ t0+T

t0

[
(f(t)− Fu)2[a(t)]2

]
dt

∫ t0+T

t0
[a(t)]2dt

(5)

[Ba
w]2 =

∫ t0+T

t0
(ȧ(t)/2π)2

∫ t0+T

t0
[a(t)]2dt

(6)

where Bf
w is the frequency component of bandwidth, and Ba

w is the
amplitude related one. We also introduce the positive decay ampli-
tude related component, which is calculated as Ba

w, but only in the
decaying amplitude regions ȧ(t) < 0 (i.e., in the ȧ(t) > 0 regions
a(t) and ȧ(t) are set to 0 prior to bandwidth estimation)

[Ba+
w ]2 =

{∫ t0+T

t0
(ȧ(t)/2π)2

∫ t0+T

t0
[a(t)]2dt

}

ȧ(t)<0

(7)

There is a close relationship of the above frequency and band-
width estimates, with the first and second normalized spectral mo-
ments. More specifically under certain conditions they are consid-
ered to be equivalent [1]. The general n-th spectral moment of a
short-time resonant signal rk(t), corresponding to the output of the
k-th filter in a filterbank analysis, is defined as

Sn
k =

∫ π

0

|Rk(ω)|γωndω (8)

where Rk(ω) is the fourier transform of rk(t). The n-th normalized
spectral moment is defined as

Nn
k = Sn

k /S0
k (9)

The standard MFCC features can be considered as the DCT of the
(log) zero order spectral moment (S0) with exponent γ = 2. The
first normalized spectral moment (N1) has also been used for speech
recognition [3], termed as Spectral Subband Centroids.

2DESA is actually a family of efficient algorithms that use various dis-
crete time approximations of the continuous TEO [9, 10].

0 5 10 15 20 25 30 35
30

35

40

45

50

55

60
LogAmpl vs Freq vs Bandwidth / monophones

number of bands

A
cc

ur
ac

y 
(%

)

 

 

LogAmpl

Freq

Bandwidth

Fig. 1. Comparison of phone recognition rates for the TIMIT
database, for the (log) amplitude A (no DCT applied), frequency Fw,
and bandwidth Bw features, as a function of the number of bands. A
50% overlap is used in all filterbanks.

3. FREQUENCY AND BANDWIDTH-BASED FRONT-ENDS

Next we investigate the design of a speech recognition front-end that
uses stand-alone frequency- and bandwidth-based features. Two im-
portant issues are investigated, namely, the selection of the filterbank
parameters and the decorrelation of the feature vector. The analysis
is grounded with the “standard” MFCC front-end.

3.1. Filterbank Parametrization

There are four main filterbank parameters for consideration in the
MDA analysis: (1) the number of analysis bands (filters), (2) the
type of the filters used, (3) the filter bandwidth (or the filter overlap),
and (4) the distribution of the filters in the frequency scale. Previ-
ous studies have also examined the aforementioned parameters for
frequency-based feature sets, however we address here some new
findings.

Considering the number of analysis bands, previous studies (e.g.
[3]) have reported an optimal number of analysis bands, beyond
which there is a degradation in the recognition performance. This re-
sult is replicated in Fig. 1, where the short-time frequency and band-
width feature recognition rates are plotted in relation to the number
of analysis bands (TIMIT phone recognition task, see also the next
section). For comparison, the recognition rates using energy-based
features are also plotted (log amplitude without DCT).

We can see that energy- and frequency-based features have sim-
ilar performance until around 12 to 16 filters. Further increase in
the number of filters gives no improvement for the energy features,
whereas for the frequency features a serious degradation is observed.
Bandwidth features, in general, have lower performance, and similar
behavior to frequencies. For the frequency and bandwidth features,
the degradation is due to the narrowing of the filters, since their over-
lap is kept at 50%. The bandwidth reduction results in a high influ-
ence from the harmonics of the fundamental frequency3. This is es-

3If a filter is narrow including only one strong harmonic, the frequency
estimate Fw is dominated by the frequency of the harmonic.



pecially pronounced in the lower and phonetically critical bands if a
log scale is used (such as in our case), where the bandwidth becomes
comparable to the interharmonic distance. This is probably one of
the reasons that some previous efforts involving frequency features
(spectral moment based estimation) use a filterbank with frequencies
linearly spaced [3]. In order to overcome the harmonic interplay,
for the frequency and bandwidth estimation, we increase the over-
lap between filters by widening their bandwidths. This results in
significant improvement of the performance of both frequency and
bandwidth features (see Table 1). This is also mirrored in the filter
type, where we have observed that Gabor filters (both frequency and
time domain) have in general better performance than the standard
frequency domain triangular filterbank, since they are wider in the
central frequency region. A direct definition of the frequency overlap
for the Gabor filterbank does not exist, instead we derive an equiv-
alent overlap based on the energy overlap4, which for the triangular
filterbank is 0.25 (i.e. 25%). The equivalent overlap is derived as the
square root of the energy overlap. Table 1 shows the TIMIT phone
recognition rates for amplitude, frequency and bandwidth based fea-
tures extracted using filterbanks with equivalent overlap of 50%,
60%, 70% and 80% (16 mel-spaced Gabor filters up to 8 kHz). Best
recognition rates are obtained with equivalent overlap of 70% for
frequency, 80% for bandwidth, whereas no significant improvement
is observed for amplitude features (with or without DCT).

Table 1. TIMIT Phone Recognition Accuracies (%) for amplitude,
frequency and bandwidth for different filterbank overlaps.

Overlap 50% 60% 70% 80%
Features
A 56.76 55.35 53.77 51.67
ADCT 60.09 60.38 59.95 58.86
Fw 49.57 59.40 61.21 60.86
Bw 37.37 46.51 51.14 53.03

3.2. Decorrelation of feature vector

A common technique used for decorrelating the feature vector for
speech recognition is the discrete cosine transform (DCT). Decor-
relation is a necessary step, since the HMM framework used for
recognition usually assumes independence between the feature vec-
tor components, i.e., diagonal covariance matrices. Although for
energy-based features the DCT is beneficial, we have experimentally
found that for frequency- and bandwidth-related features only mod-
erate correlation exists between coefficient of adjacent filters. This
can be seen in Fig. 2(c), where the Pearson correlation coefficient
matrix has been computed for the frequency Fw feature vector. For
reference, the correlation matrix for the amplitude A feature vector
is shown in (a). Also the DCT’s of the two feature vectors are shown
in (b), (d). Clearly, the frequency-based features are only moderately
correlated, and the correlation increases after the application of the
DCT. Similar results can be obtained for bandwidth-based features.
Overall, the DCT is used only for energy-based features, whereas
frequency- and bandwidth-based features are used as are, without
any transformation. Retaining the frequency domain representation
of the feature vector (instead of transforming them, e.g., to the cep-
strum domain) is advantageous5 for a variety of robust speech recog-

4Computed as the overlap ratio of the magnitude frequency responses of
adjacent filters.

5However, this advantage comes with the small cost of potentially larger
feature vectors.
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Fig. 2. The correlation coefficient matrix is shown for energy- and
frequency-based feature vectors, computed for a TIMIT utterance
using 16 mel-spaced filters. The correlation matrix is shown for: (a)
the (log) amplitude A feature vector, (c) the frequency Fw feature
vector, (b),(d) DCT transformed vectors for (a),(c), respectively. Ab-
solute correlation values are shown in greyscale; black corresponds
to 1 (fully correlated) and white to 0 (uncorrelated).

nition algorithms, e.g., frequency warping, spectral mask estimation.

4. EXPERIMENTAL RESULTS

The following feature sets are examined:

• MFCC: the standard features (no C0 or energy term included)

• ADCT : the short-time log amplitude (13 DCT coef., no C0)

• Fw: the short-time instantaneous frequency estimated by (3)

• N1: the first normalized spectral moment estimated by (9)
using the same frequency-domain Gabor filterbank used in
the MDA analysis

• Bw: the short-time bandwidth estimated by (4)

• Bf
w: the frequency component of bandwidth (5)

• Ba
w: the amplitude component (6)

• Ba+
w : the decaying amplitude component (7)

All feature vectors are augmented by their first and second time-
derivatives. A Gabor filterbank is used for all features, with the ex-
ception of MFCCs where the standard triangular filterbank is used.
50% is overlap is used for energy-based features (MFCC, Ampli-
tude) and an equivalent of 70% overlap is used for frequency and
bandwidth based features.

4.1. Clean recording conditions

Performance was evaluated for the phone recognition task on the
TIMIT database (16 kHz). Using the HTK framework, 3-state
phonemic HMMs with a mixture of 16 Gaussians per state were
trained using 4 reestimation iterations. Three different filterbanks
were used, having 16, 20 and 26 mel-spaced filters up to 8 kHz. The
results are summarized in Table 2.



Table 2. Phone Recognition Accuracies (%) on the TIMIT Database.
#Filters 16 20 26

Features
MFCC 60.20 60.58 60.66
ADCT 60.09 60.68 61.16
Fw 61.21 61.34 59.88
N1 60.54 61.02 60.38
Bw 51.14 51.22 49.05
Bf

w 48.17 47.67 44.14
Ba

w 48.06 49.37 48.15
Ba+

w 50.49 51.31 50.95

The recognition performance of the Fw features is better than the
standard MFCC features in the cases of filterbanks with 16 and 20
filters, but slightly worse in the 26 filters case. This suggests that in
the case of 26 filters a wider filterbank should probably be used. Fur-
thermore the spectral moment estimation also benefits from the use
of a wider filterbank, having similar performance to the short-time
instantaneous frequency. The performance of bandwidth related fea-
tures is also noteworthy, since it exceeds 50%. The amplitude related
component seems to be a better estimate than the frequency counter-
part, and more specifically the decaying amplitude estimation.

Furthermore, we have augmented the frequency features with
the log energy coefficient (E), and the zeroth cepstral coefficient
(C0), and compared it with the corresponding MFCC features. The
results are summarized in Table 4. The performance of frequency
feature vector plus energy (or C0) compares well with the MFCC
vector plus energy (or C0).

Table 3. Phone Recognition Accuracies (%) on the TIMIT Database
using augmented vectors

#Filters 16 20 26
Features
MFCC+E 64.06 64.28 64.10
MFCC+C0 64.16 64.29 64.24
Fw+E 63.78 63.99 62.55
Fw+C0 64.28 64.11 62.73

The results shown in Table 2, as well as in Table 4, suggest that
frequency related features can be used as an alternative ASR front-
end, with very good performance. This has been verified also on
digit and word-recognition tasks [12]. This can be achieved with
the use of wider filterbanks in order to overcome the harmonic influ-
ence. Moreover the bandwidth estimates carry significant phonetic
information.

4.2. Noisy conditions

Frequency-based features have been shown to be robust in additive
noise [2, 3]. We performed a preliminary study of noisy speech
recognition with the new feature extraction technique, on the Span-
ish Task of the Aurora 3 database. The recognition experiments were
performed on the 8 kHz dataset, which was analyzed with a filter-
bank of 12 Gabor filters equally spaced in the Mel frequency scale
up to 4 kHz. The results are summarized bellow, for three different
noise situations: well-matched (WM), medium-mismatched (MM),
and high-mismatched (HM). It is clear that the frequency features
perform significantly better in all noise situations. Moreover the
recognition improvement increases as the noise situation gets worse.

Table 4. Word Recognition Accuracies (%) on the AURORA 3
Spanish Task

WM MM HM
MFCC+E 86.88 73.72 42.23
Fw+E 92.22 84.53 73.56

5. CONCLUSIONS

We investigated the use of short-time amplitude weighted instanta-
neous frequencies and bandwidths as a stand alone ASR front-end.
Our investigation showed that a frequency front-end can be superior
to a power spectral base front-end, especially in noisy situations. We
also found that bandwidth features can carry substantial phonetic in-
formation that can be exploited for speech recognition. Designing
the appropriate filterbank for frequency- and bandwidth-based fea-
tures was essential to achieving this high perfromance, in order to
avoid the influence of the pitch harmonics. In this study, we used a
Gabor filterbank with mel-spaced center frequencies, and 70% filter
overlap. However a more extensive research is needed to determine
the optimal filterbank setup. Moreover complementary information
to the averages of instantaneous frequency and bandwidth must also
be investigated in the ASR context.

6. REFERENCES

[1] A. Potamianos and P. Maragos, “Time-frequency distributions for au-
tomatic speech recognition,” IEEE Transactions on Speech and Audio
Processing, vol. 9, no. 3, pp. 196–200, Mar 2001.

[2] D. Dimitriadis, P. Maragos, and A. Potamianos, “Robust AM–FM fea-
tures for speech recognition,” IEEE Signal Processing Letters, vol. 12,
no. 9, pp. 621–624, September 2005.

[3] J. Chen, Y. A. Huang, Q. Li, and K. K. Paliwal, “Recognition in noisy
speech using dynamic spectral subband centroids,” IEEE Signal Pro-
cessing Letters, vol. 11, no. 2, pp. 258–261, February 2004.

[4] A. Potamianos and P. Maragos, “Speech analysis and synthesis using
an AM–FM modulation model,” Speech Communication, vol. 28, pp.
195–209, July 1999.

[5] M. D. Plumpe, T. F. Quatieri, and D. A. Reynolds, “Modeling of the
glottal flow derivative waveform with application to speaker identifi-
cation,” IEEE Trans. Speech and Audio Processing, vol. 7, no. 5, pp.
569–586, September 1999.

[6] C. R. Jankowski Jr., T. F. Quatieri, and D. A. Reynolds, “Measuring fine
structure in speech: Application to speaker identification,” in ICASSP-
95, Detroit, USA, May 1995.

[7] M. Grimaldi and F. Cummins, “Speaker identification using instanta-
neous frequencies,” IEEE Trans. Audio, Speech and Language Pro-
cessing, vol. 16, no. 6, pp. 1097–1111, August 2008.

[8] A. Potamianos and P. Maragos, “Speech formant frequency and band-
width tracking using multiband energy demodulation,” Journal of
Acoustical Society of America, vol. 99, pp. 3795–3806, June 1996.

[9] P. Maragos, J. F. Kaiser, and T. F. Quatieri, “Energy separation in signal
modulations with application to speech analysis,” IEEE Trans. Signal
Processing, vol. 41, no. 10, pp. 3024–3051, October 1993.

[10] P. Maragos, J. F. Kaiser, and T. F. Quatieri, “On amplitude and fre-
quency demodulation using energy operators,” IEEE Trans. Signal Pro-
cessing, vol. 41, no. 4, pp. 1532–1550, April 1993.

[11] D. Dimitriadis, A. Potamianos, and P. Maragos, “A comparison of
the squared energy and teager-kaiser operators for short-term energy
estimation in additive noise,” IEEE Trans. Signal Processing, vol. 57,
no. 7, pp. 2569–2581, July 2009.

[12] P. Tsiakoulis, A. Potamianos, and D. Dimitriadis, “Spectral moment
augmented by low order cepstral coefficients for robust ASR front-
end,” IEEE Signal Processing Letters, submitted 2009.


