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ABSTRACT

The recent development of Audio-based Distributional Semantic
Models (ADSMs) enables the computation of audio and lexical vec-
tor representations in a joint acoustic-semantic space. In this work,
these joint representations are applied to the problem of automatic
tag generation. The predicted tags together with their correspond-
ing acoustic representation are exploited for the construction of
acoustic-semantic clip embeddings. The proposed algorithms are
evaluated on the task of similarity measurement between music
clips. Acoustic-semantic models are shown to outperform the state-
of-the-art for this task and produce high quality tags for audio/music
clips.

Index Terms— distributional semantic models, bag-of-audio-
words, auto-tagging, music similarity

1. INTRODUCTION

Semantic information in the form of metadata, e.g., tags, has been
valuable in enhancing the performance for many music processing
tasks [1, 2, 3]. Metadata typically comes in two forms: free text
associated with a music or audio clip or tags (list of words or phrases)
that describe the clip. Tags are often preferred over (web-mined)
text, because they give a direct description of the song, e.g., genre
or instruments, while the latter is inherently noisy; only a part of the
text is musically relevant. The automatic annotation of clips (auto-
tagging) is becoming vital and finds numerous applications including
efficient music indexing and retrieval.

A variety of auto-tagging methods have been proposed in the lit-
erature. In [4], the similarity between artists is exploited for the pre-
diction of the most descriptive tags for clips. In [5], language models
were computed using Restricted Boltzmann Machines, while in [6],
the combination of audio features is proposed within a block-level
framework. The use of semantic tags for music similarity measure-
ment is proposed in [7], where each song is represented by a Seman-
tic Multinomial Distribution over a vocabulary of tags.

Music similarity is at the core of query-by-example, where the
user gives a musical piece as a query and the system returns a ranked
list of recommendations. Content-based similarity can be exploited
by collaborative filtering algorithms [8] especially where there is
lack of collaborative filtering data, a.k.a. “cold start” problem. This
improves the efficiency of music recommendation and playlist gen-
eration, two important tasks in Music Information Retrieval (MIR).
Music similarity estimation can be formulated as the problem of

finding an appropriate embedding of a music clip with respect to
a distance metric. Many approaches use machine learning tech-
niques in order to learn the distance metric that best approximates
absolute user ratings [9, 10] or relative user ratings from different
datasets [11]. Furthermore, research efforts include the collection of
similarity scores that can be used as groundtruth information [12, 13]
and the investigation of different evaluation techniques [14] for mu-
sic similarity.

Distributional Semantic Models (DSMs) [15] is a popular
method for automatically constructing semantic representations
from text. Despite their success in various semantic tasks (e.g.,
semantic classification and computation of semantic similarity), the
DSMs have been criticized as “disembodied”, since they rely solely
on linguistic information without being grounded in perception and
action. The disconnection of natural language from the physical
world, also referred as the symbol grounding problem [16], is al-
leviated via the integration of multiple modalities [17, 18]. The
development of audio-based DSMs (ADSMs) was proposed in [19]
for the representation of words based on their acoustic properties,
while in [20] an extension was presented using combinations of
auditory and linguistic features. A recently proposed approach dealt
with the fusion of (different) acoustic features according to the
nature of sounds (music, speech, other) [21].

In this work, the ADSM described in [21] is adopted for the
computation of audio and lexical vector representations in a joint
acoustic-semantic space. These ‘bag-of-audio-words’ representa-
tions are used for the automatic annotation of music clips. Then,
the predicted tags and the acoustic features are exploited for the con-
struction of acoustic-semantic clip embeddings. The proposed al-
gorithms are evaluated on the task of music similarity measurement
between clips taken from the MagnaTagATune dataset [12].

This paper is organized as follows. In Section 2, various meth-
ods are described for the construction of clip representations. In
Section 3.1, the experimental dataset and procedure are described
in detail, while in Section 4, the evaluation results of the proposed
methods are reported and compared with the literature.

2. SYSTEM DESCRIPTION

For a dataset consisting of audio clips and the corresponding anno-
tation (tags), the procedure for the creation of clip representations
consists of a series of steps described below.
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Fig. 1: Schematic explanation of the proposed algorithms. (a) Training: creation of the audio-word vocabulary and tag representations.
(b) Testing: an auto-tagging example along with various methods for the representation of clips: AUDIO, ADSM/FUSION-AUTOTAG.

2.1. Creation of audio-word vocabulary

In order to train an audio-word vocabulary, the clips are partitioned
into partially overlapping windows and a feature vector is extracted
from every window. Therefore, every clip is represented by a set of
vectors depending on its length. Next, all vectors are clustered by
applying the k-means algorithm and the k centroids of the returned
clusters are considered as the audio-words of the vocabulary.

2.2. Audio clip representations

As presented in [21], audio clips are represented as a mixture of
audio-words. For each window ~ot of a clip, a feature vector ~xt ∈
Rd is computed (where d is the dimensionality of the feature space)
and associated with the audio-word vocabulary. The association is
performed by encoding the ~xt vector as a k-dimensional vector ~et:

~et = (w1, w2, ..., wk), (1)

where wi ∈ [0, 1] and
∑k

i=1 wi = 1. The weight wi denotes the
contribution of the i-th audio-word to the window representation and
is computed according to the similarity score between the audio-
word and the feature vector xt (see [21] for details). Finally, the clip
representation, rc, is obtained by averaging the vectors computed for
the respective windows. Given a collection consisting of M clips,
this process results in a M × k matrix. The space consisting of
bag-of-audio-words clip representations, will be referred as AUDIO
space.

2.3. Tag representations via the ADSM

As described in [21], an ADSM is constructed that provides bag-of-
audio-words embeddings for tags, based on their association with the
clips. In particular, the representation ~rj of a tag j is computed by
averaging the representations of clips that have this tag in their de-
scriptions. For a collection of audio clips with T (unique) tags this
results in a T ×k matrix. Then, the Positive Pointwise Mutual Infor-
mation (PPMI) weighting is applied to the matrix [22]. The overall
procedure, up to the creation of tag representations, is represented in
Fig 1(a).

2.4. Clip annotation (auto-tagging)

The bag-of-audio-words representations of tags provide a straight-
forward way for the automatic annotation (auto-tagging) of an audio
clip c. First, the clip gets a representation, ~rc in the AUDIO Space.
Then, the cosine similarity is computed between ~rc and the repre-
sentation ~rj of each tag j:

scj =
~rc · ~rj
|~rc| · |~rj |

. (2)

The N tags that best describe the clip c are those corresponding to
the N highest similarity scores scj .

Table 1 includes some examples selected from the MagnaTa-
gATune dataset (see Section 3.1) for which the groundtruth labels
are compared with the N = 5 automatically predicted tags. It
is observed that many tags appear both in the predicted and the
groundtruth labels, while other tags have very similar meaning (e.g.,
‘silence’ and ‘quiet’). Moreover, quite descriptive tags are returned
for clips that have no annotations (e.g., clip 19920).

2.5. Semantic representations of clips

The ADSM described in Section 2.3 is exploited for the representa-
tion of audio clips via their association with tags. Specifically, the
embedding of a clip is obtained by averaging the representations of
tags that are semantically related with the clip. The determination
of clip-tag associations can be performed either using already pro-
vided metadata, or via the proposed auto-tagging scheme. In the
latter case, the clip gets a representation (in the ADSM-AUTOTAG
space), as follows:

~r′c =
1

N

N∑
i=1

~ri, (3)

where ~ri is the representation of the i-th tag, while N denotes the
number of tags returned by the auto-tagger.

2.6. Fusion of audio and semantic representations

The similarity score between two clips in the AUDIO space is com-
puted as the cosine similarity of their acoustic representations. Sim-



Clip id Groundtruth Tags Predicted Tags (N=5)
3843 indian, sitar sitar, indian, eastern, india, oriental
9531 rock, heavy, heavy metal, loud, fast, hard rock, metal hard, loud, heavy, heavy metal, metal

13526 bass, drums, drum, funky, reggae funky, beat, drums, reggae, funk
15380 classical, solo, cello, violin, strings cello, viola, violin, solo, classical
19920 - orchestra, violins, flutes, fiddle, violin
21725 choir, choral, men, man monks, chant, chanting, men, choral
29231 acoustic, guitar classical guitar, guitar, acoustic, lute, spanish
43390 rock, loud, pop, vocals, male vocals male vocals, pop, male vocal, male singer, rock
48010 silence low, soft, no singing, quiet, wind
57081 piano piano solo, piano, classic, solo, classical

Table 1: Examples of auto-tagging outputs for the MagnaTagATune dataset.

ilarly, the similarity between clips in the ADSM space is computed
as the cosine similarity of their respective semantic representations.
However, the characterization of clips only via their semantic repre-
sentations in some cases may lead to inaccurate estimates. For ex-
ample, if two clips are annotated with the same labels, they will have
exactly the same ADSM representations although they sound differ-
ent. This problem can be alleviated with the fusion of acoustic and
semantic information. The clip embedding ~rc in the AUDIO space
can be combined with the embedding from the ADSM (or ADSM-
AUTOTAG) space, ~r′c, via a weighted average scheme:

~r′′c = w~r′c + (1− w)~rc, (4)

or via a weighted concatenation:

~r′′c = w~r′c ⊕ (1− w)~rc, (5)

where ⊕ stands for the vector-concatenate operator and w is a real-
valued number indicating the relative importance of the fused repre-
sentations. This method results in clip embeddings in the FUSION
(or FUSION-AUTOTAG) space. The various methods for the rep-
resentation of clips are graphically represented along with an auto-
tagging example in Fig 1(b).

3. EXPERIMENTAL DATASET AND PROCEDURE

The proposed algorithms are evaluated for the similarity computa-
tion between songs. For this purpose, the MagnaTagATune dataset
is used.

3.1. The MagnaTagATune dataset

The MagnaTagATune dataset contains 25,863 30-second audio clips
(provided by the Magnatune1 label) and 188 tags. In addition, sim-
ilarity data have been collected from the TagATune game [23]. In
a bonus part of the game, the user listens to three songs and gives
a vote to the song that sounds as the most dissimilar when com-
pared with the other two songs (often called as odd one out game).
The similarity data for every triplet of clips is stored in form of
a triplet representing the histogram of votes i.e., the clip associ-
ated with the maximum value is the most irrelevant clip. In to-
tal, 533 triplets are derived and every triplet of song ids is saved
in the form (a, b, c) where c is the outlier. This explicitly means that
d(a, b) < d(a, c) (constraint (a, b, c)) and d(b, a) < d(b, c) (con-
straint (b, a, c)), where d() is the perceptual distance between two
clips.

1http://magnatune.com/

Due to the objective opinion of each user, there are constraints
that contradict each other. Hence, a method was proposed in
[10] in order to deal with the inconsistent constraints. In [9],
the 860 remaining constraints derived from [10] were split into
non-overlapping training and test sets of 774 and 86 constraints,
respectively enabling 10-fold cross-validation. These constraints
are published serving as a common evaluation benchmark. The
described benchmark is used in this work.

3.2. Data preprocessing and feature extraction

All audio clips are converted to WAV format and resampled at 22.05
kHz. For each clip, a feature vector is extracted from windows of
250 ms with a step of 100 ms. Here, two different feature vec-
tors are extracted: the first (EchoNest) is obtained by the EchoN-
est API 1.02. Specifically, 24 features per audio frame have been
kept, consisting of 12 chroma features and 12 timbre features. The
chroma features describe the relative dominance of every pitch in
the chromatic scale and are normalized to [0, 1]. The timbre features
correspond to the coefficients of 12 basis functions which represent
the texture of sound. The second type of feature vectors (MFCCdd)
consists of the Mel Frequency Cepstral Coefficients (MFCCs) (con-
catenated with spectral energy), their 1st and 2nd order derivatives,
resulting in a vector of 39 coefficients. In both cases, the feature
vectors are normalized by their mean and standard deviation values
(Z-normalization).

3.3. Experimental procedure

For each step of the 10-fold cross validation, the audio-word vocabu-
lary and the ADSM are built using the training clips3. The represen-
tations are then computed for the test clips and the similarity scores
are obtained, as described in Section 2.6. The following methods are
evaluated:

• AUDIO: only the acoustic features are used (Section 2.3).

• ADSM: clip representations are obtained via the provided
tags (Section 2.5).

• ADSM-AUTOTAG: same with ADSM method, but all clip
representations (even for clips that have labels) are derived
via auto-tagging (Section 2.4). Here, N = 20 tags are pre-
dicted for every clip.

2http://developer.echonest.com/
3For computational efficiency, 1000 clips are randomly selected from the

training set for the audio-word vocabulary.



Literature Method EchoNest Features
Euclidean [11] 0.598
RITML [11] 0.711

SVM [9] 0.712
MLR [9] 0.689

Table 2: Accuracy of methods reported in the literature [9, 11].

Proposed EchoNest MFCCdd
Method k=300 svd=10 k=300 svd=10
AUDIO 0.613 0.644 0.636 0.646
ADSM 0.705 0.719 0.717 0.720

FUSION 0.720 0.731 0.681 0.684
ADSM-AUTOTAG 0.705 0.705 0.693 0.696

FUSION-AUTOTAG 0.705 0.709 0.662 0.672

Table 3: Accuracy of proposed methods for EchoNest and MFCCdd
features. For FUSION, w=0.9, while for AUTOTAG, N=20.

• FUSION: fusion of AUDIO and ADSM representations
(Section 2.6, for w = 0.9).

• FUSION-AUTOTAG: fusion of AUDIO and ADSM-AUTO-
TAG representations, for w=0.9 and N=20.

The number of audio-words (i.e., the number of clusters) is fixed to
k = 300. In addition, dimensionality reduction via Singular Value
Decomposition (svd denotes the number of dimensions) was option-
ally performed on the matrix where the rows correspond to different
audio clips and the columns to their representations.

The adopted evaluation metric is the accuracy of each method,
which is defined as the percentage of total test constraints (see Sec-
tion 3.1) that are satisfied. The experimental procedure is followed
for each of the 10 folds and the final score is computed as the average
of the accuracy scores. This procedure is repeated 10 times.

4. EVALUATION RESULTS

Table 2 includes the state-of-the-art performance (see [11] for a
brief overview), while the accuracy of the proposed methods is
presented in Table 3. In addition to clip representations, where
k=300, the performance is reported with respect to svd=10 dimen-
sions where the best accuracy is achieved for most methods. The
FUSION method4 yields the best accuracy score: 0.731, which is
higher than the best score reported in the literature (0.712 achieved
by SVM [9]). Moreover, the exploitation of semantic information
via the ADSM method boosts the performance compared with the
AUDIO method (up to 12.7% relative improvement). Regarding
the ADSM-AUTOTAG, the auto-tagging algorithm is applied for all
the test clips, which were not used for the training representations.
However, the ADSM-AUTOTAG method achieves comparable per-
formance with the ADSM method, where the dataset labels are
used.

The quality of the auto-tagger’s predictions was also confirmed
after the manual inspection of the predicted tags for the examples
of Table 1. Hence, the auto-tagger’s predictions can be exploited for
the annotation of clips without tags or for the enrichment of provided

4The performance of the weighted concatenation (see (5)) was found to
be comparable with the performance of the weighted average (see (4)), so the
respective results are not reported here.

Fig. 2: Accuracy with respect to different training sizes, i.e., number
of MagnaTagATune clips used to train the audio-word vocabulary.
Results are shown for EchoNest features using k = 300.

annotations. Despite the fact that the training similarity data (here, in
the form of constraints) are not used, the reported results exceed the
state-of-the-art. Hence, the proposed unsupervised algorithm can be
applied in any dataset without the need of manually created similar-
ity data.

In Fig 2, the accuracy of the AUDIO, ADSM and FUSION
methods is shown as a function of the number of clips, which were
used for the construction of the audio-word vocabulary. Interest-
ingly, even a small number of clips (50-200) is sufficient for the cre-
ation of a vocabulary of audio-words, achieving 0.717 accuracy (for
FUSION method and 200 training clips). In addition, it appears that
the ADSM and FUSION methods are more robust with respect to
data sparsity compared to the AUDIO method.

5. CONCLUSIONS

In this work, an audio-based DSM is exploited for creating lexi-
cal representations and the clip representations are derived via an
auto-tagging scheme. The evaluation is performed on the task of
music similarity measurement using the MagnaTagATune dataset.
Although the similarity ratings provided with the dataset are not
considered in the proposed algorithms, they exceed state-of-the-art
methods, that use them in order to train a similarity metric. More-
over, very few data, e.g., 50 clips, are adequate to train the vocab-
ulary, which is used for the creation of bag-of-audio-words repre-
sentations. Therefore, this unsupervised algorithm can be applied
in every dataset where neither clip annotations or similarity data are
necessary. Regarding future work, we aim to investigate the fusion
of acoustic, semantic and visual modalities and test the proposed al-
gorithm on multimedia data.
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