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Abstract—Typically, Distributional Semantic Models (DSMs)
estimate semantic similarity between words using a single-model,
where the multiple senses of polysemous words are conflated in
a single representation. Similarly, in textual affective analysis
tasks, ambiguous words are usually not treated differently when
estimating word affective scores. In this work, a semantic mixture
model is proposed enabling the combination of word similarity
scores estimated across multiple topic-specific DSMs (TDSMs).
Based on the assumption that semantic similarity implies affec-
tive similarity, we extend this model to perform sentence-level
affect estimation. The proposed model outperforms the baseline
approach achieving state-of-the-art results for semantic similarity
estimation and sentence-level polarity detection.

I. INTRODUCTION

Distributional semantic models (DSMs) aim at representing
the meaning of lexical entities by encoding linguistic features
extracted from text corpora. Word-level representations are the
building block for more complex phrase– and sentence–level
representations used for similarity computation [1], [2].

Word-level DSMs can be broadly categorized, with respect
to the extraction of contextual features, into unstructured
and structured. The bag-of-words model is the most widely
used approach, lacking however some desirable characteristics
such as “order sensitivity” [3]. Unlike unstructured models,
the order of extracted features is taken into account in the
framework of structured DSMs via the exploitation of syntactic
relationships (e.g., argument structures and modifications) [4].
Recently, the computation of contextual features was posed in
a learning-based framework, where the goal is to estimate the
context in which the words of interest are expected to occur
[5], [6].

The multiple senses of polysemous words are typically not
directly encoded in DSMs. To address this issue, exemplar
models were proposed, where the meaning of a word was
represented by a set of stereotypical corpus sentences instead
of a single feature vector [7]. An alternative approach is the
use of topic modeling, which results into a parsimonious
representation of the topics (thematic domains) that exist in
the corpus under analysis. Typically, each topic is represented
as a distribution of words being salient for the respective topic.
Latent Dirichlet Allocation (LDA) [8] constitutes the most
widely-used topic modeling approach using models proposed
in [9] and [10]. Extensions of LDA include the Correlated
Topic Model (CTM) [11] and the Pachinko Allocation machine
[12] which aim to improve the topic detection process by
measuring the correlation between topics. The main motivation

behind the use of topic models, for the task of word semantic
similarity computation, is to adapt the similarity estimates
provided from various topics. This is similar to using semantic
mixture models to encode multiple senses in words.

In this work, a topic-based semantic mixture model is
proposed for the computation of semantic similarity between
words. This is motivated by previous approaches (e.g., [13]–
[15]) to utilize a combination of similarities computed via
topic-based DSMs. In addition, the proposed mixture model
is incorporated into a semantic-affective mapping used for
estimating affective scores for sentences. Significant improve-
ments over the baseline models were achieved reaching state-
of-the-art performance.

II. RELATED WORK

Sense-agnostic representations were introduced in [16]
where context-dependent clusters were combined to seman-
tically represent words. The model was extended in [17] to
automatically estimate the number of clusters.

Subsequent approaches mostly relied on neural network
architectures that encode multi-sense information. The work
of [18] proposed a skip-gram word2vec model that com-
bined global and local context information to train word
embeddings. They used spherical k-means to cluster word
context, assuming a fixed number of possible senses per word.
Later, the skip-gram sense-embeddings were refined through
backpropagation, as described in [19]. An improved version
of the same network was introduced by [20], where the
posterior probability of a context word was represented as a
mixture of the senses of the target word. In [21] the skip-gram
model was further modified to jointly train word and sense
vectors, while WordNet glosses were used to assign senses
to the target words. A different approach proposed by [22]
utilized bilingual resources to learn multiple sense-specific
embeddings for each ambiguous word, with a recurrent neural
network. The model described in [23] considered a Gaussian
mixture for each word, where each Gaussian component repre-
sented a word sense. A dynamic skip-gram mixture model was
proposed, able to detect different number of senses for each
word during training. Additionally, skip-gram was extended
in [14] to simultaneously train word and topic embeddings
and to identify their interactions. The representation of each
word was formed as a mixture of the word’s different senses
and a topic embedding was produced by averaging the word
embeddings under the topic. Finally, LDA was employed into



the skip-gram model, as depicted in [13], to get the distribution
of a word over the topics.

Different techniques involved knowledge-based approaches
that use sense inventories to obtain word-sense embeddings
[24], ontologically grounded senses [25], WordNet lexemes,
where each word is considered the sum of its lexemes [26]
and Wikipedia links to identify specific senses [27]. A model
for training multiple embeddings per word according to its
senses, based on the Chinese restaurant process is described
in [28]. The proposed approach followed the idea that a word
should have a new sense if there is corresponding evidence in
the context. State-of-the-art models, that deal with contextual
word similarity, make use of context auto-encoders for each
word [29] or neural networks for joint extraction of words
and contexts [30]. The best performance was achieved in
[31], where pre-trained word representations were linked to
WordNet. Biased words were utilized towards the target word
to find the minimum distance among them and considered this
embedding as a sense-agnostic embedding.

Topic models were also recently used for sentiment analysis
tasks. In [32] both topics and sentiments were detected in
Weblogs using a Topic-Sentiment mixture model. Multinomial
distributions were incorporated based on the assumption that
a document contains different topics and each topic consists
of different sentiments. Similarly, in [33] a joint model of
sentiments and topics was proposed. The LDA algorithm was
modified in order to consider sentiment labels for a document.
Another model introduced in [34] analyzed how sentiments are
expressed for different aspects, by assuming that all words
in a single sentence are generated from one aspect. Two
sentiment topic models were proposed in [35] to associate
latent topics with evoked emotions of readers. Finally, a topic-
based affective mixture model [15] predicted the polarity of
tweets by training topic-specific Support Vector Machines.

III. SEMANTIC MIXTURE MODELS

The typical use of DSMs deals with the creation of a single
feature space, where the multiple senses of a polysemous word
(assuming a generic corpus of wide coverage) are conflated
into a single semantic representation (sense-agnostic DSMs).
In this framework, the computation of semantic similarity
between a pair of words is performed across all of their
senses that appear in the corpus. For various semantic tasks
related to similarity computation such models were found to
achieve very good performance despite their divergence from
the maximum sense similarity assumption. This assumption
suggests that the semantic similarity between two words can
be estimated as the similarity of their two closest senses [36].

In this work, the aforementioned assumption is adopted via
the creation of topic-based sub-corpora with respect to any pair
of words, wi and wj , subjected to similarity computation. The
goal is the words of the pair to co-occur in each sub-corpus
with their closest senses, pertaining to the relevance with the
respective topics. This approach is different compared to the
typical corpus-based word sense induction (also referred to
as sense discovery) [37], where the discovery is performed

individually for each word. The similarity between wi and
wj is computed by a mixture model that combines similarity
scores computed over multiple topic-based sub-corpora. The
steps of the proposed approach are briefly described next.

A. Topic Modeling

The Latent Dirichlet Allocation (LDA) algorithm [8] is a
generative process that attempts to identify possible topics
(thematic domains) residing in a corpus. The underlying
assumption of the algorithm is that a document collection can
be represented as a probabilistic mixture of a fixed number
of topics, where each topic is a distribution over the words in
the collection. A trained topic model produces a distribution of
words for each topic, that are semantically related under the
corresponding topic. In the proposed approach, the possible
topics that occur in a corpus are identified by training the LDA
algorithm on the underlying corpus, for a number of topics T .

B. Creation of Topic-based Sub-corpora

In order to topically adapt the semantic space by training
topic DSMs (TDSMs), in-domain sub-corpora need to be
created. The isolation of different word senses is achieved by
collecting topic-related snippets into separate bodies of text,
using the trained topic model.

In more detail, the model is applied on the sentences of
a corpus. This choice adheres to the basic principles of topic
modeling, since sentences are topically complete and coherent
units. As a result, each sentence is probabilistically associated
with a list of topics, discussed in the sentence, according to the
topic model. A sub-corpus is created for each topic t ∈ T by
aggregating the sentences, the posterior probabilities of which
are maximized for t. This hard-clustering scheme may result
in sub-corpora of limited size. In order to relax this limitation,
a soft-clustering scheme is adopted. Specifically, a sentence is
allowed to be included in a topic-specific corpus when the
posterior probability for the corresponding topic exceeds a
threshold h. Sentences exhibiting equal posterior probabilities
across all topics are excluded from this process, as considered
too generic to provide any topic-related information.

C. Semantic Similarity Computation

The topic-based semantic representations of words are pro-
duced by training a DSM on each sub-corpus that resulted
from the previous step. We define LT as the set of T topic
DSMs (TDSMs) derived from the LDA algorithm, where λt
is the DSM trained on topic t out of the T topics in total.

The semantic similarity between two words wi and wj is
computed using different similarity metrics with respect to the
presence of context for each pair. A mixture model of topic-
based semantic similarities is incorporated to produce the final
similarity S(wi, wj) between a word pair. In accordance with
[17], we define two non-contextual metrics:

SAvgSim(wi, wj ;LT ) =
1

T

|T |∑
t=1

St(wi, wj ;λt), (1)



SMaxSim(wi, wj ;LT ) = max
t∈T
{St(wi, wj ;λt)}, (2)

where St(wi, wj ;λt) is the semantic similarity of wi and
wj computed by the λt DSM, which was built using the
sub-corpus that corresponds to topic t. In AvgSim (1), the
unweighted average of all topic-based pairwise semantic sim-
ilarities is computed. In (2) only the maximum pairwise
similarity, among T topics, is selected.

When context information is provided for a pair, a shared
context c = c(wi)⊕ c(wj) is formulated by concatenating the
contexts of each word c(wi) and c(wj). The topic model is fed
with c and outputs a list of candidate topics for c, along with
the corresponding posterior probabilities p(t|c). These topics
are utilized for identifying the respective sub-corpora, which
are used to train topic-specific DSMs (TDSMs).

In order to consider context information, AvgSim (1) and
MaxSim (2) are modified. Similarly to [17], we define two
more detailed similarity metrics1:

SAvgSimC(wi, wj ;LT ) =

∑|K(c)|
t=1 p(t|c) St(wi, wj ;λt)∑|K(c)|

t=1 p(t|c)
, (3)

SMaxSimC(wi, wj ;LT ) = St̂(wi, wj ;λt̂)

t̂ = argmax
t∈K(c)

{p(t|c)}, (4)

where K(c) are the candidate topics returned by the topic
model with a posterior probability larger than 0.01, when
given as input a shared context c, p(t|c) denotes the posterior
probability of topic t for c, while St(wi, wj ;λt) is the semantic
similarity of wi and wj from the DSM that corresponds to
topic t. Because the number of candidate topics can be less
or equal to the total number of topics (K(c) ≤ T ), for which
LDA is trained, the posterior probabilities are normalized to
sum to unity.

Given c as input to the topic model, (3) computes a weighted
average of topic-based semantic similarities using the topics
posterior probabilities as weights2. The model takes the middle
road between the maximum sense similarity hypothesis and
the sense-agnostic DSMs. This hypothesis is adopted for the
identification of sub-corpora in which wi and wj appear with
related senses under the thematic domain of the corresponding
topic. The incorporation of the mixture weights in the com-
putation of the final similarity relaxes the hypothesis. Using
(4) a pair is assigned the semantic similarity of the topic with
the maximum posterior probability, hence the dominant topic
in the provided context.

Additionally, we introduce a fusion model that combines
information from multiple topic models trained for different
number of topics. In more detail, for a topic model trained on
T topics, the semantic similarity of a word pair is calculated
using one of the aforementioned metrics, as defined in (1)−(4).

1The additional capital letter C stands for Context.
2For pairs that share the same word, but are found in different contexts,

the model always assigns them a similarity score equal to one, as their
representations are extracted from the same topic-based DSM.

Among the similarities produced by training the topic model
for various number of topics, we select the maximum pair
similarity over a group G, of topic DSM sets LT , generated
by different topic models:

SFuse(wi, wj) = max
LT∈G

{S*Sim(wi, wj ;LT )}, (5)

where S*Sim(wi, wj ;LT ) is the wi, wj pair similarity com-
puted with (1)−(4), using a topic model trained on T topics
and G is the group of DSM sets that will be fused.

Finally, we employ a linear regression model to combine
pairwise similarities between topic DSMs (TDSMs), resulted
from a topic model trained on T topics. The model aims to
minimize the Mean Squared Error (MSE) by training a set
of β weights on a group of similarities between words. The
motivation behind this idea is to learn how to combine topic-
specific similarities for isolated words. The context-dependent
similarity metric (3) requires additional input (context) to
estimate how much each topic-similarity will be weighted.
In contrast, when no context is present, instead of assum-
ing that all topics contribute equally to the estimation of a
pairwise similarity, as described in (1), we argue that a linear
combination of topic-similarities will produce a more precise
estimation,

SLRSim(wi, wj ;LT ) = β0 +

|T |∑
t=1

βt St(wi, wj ;λt), (6)

where βt are learned weights by the regression model for the
corresponding topic t, St(wi, wj ;λt) is the similarity of a pair
wi, wj computed from the DSM trained on the sub-corpus of
topic t and β0 is a bias weight. The β weights sum to unity.

IV. AFFECTIVE ANALYSIS OF TEXT

We extend the semantic mixture model to predict affective
scores for sentences. For this purpose we use the semantic-
affective model (SAM) proposed in [38]. The model exploits
the continuous affective space (valence-arousal-dominance)
and computes affective ratings for unknown words, as shown
in Fig. 1. The required inputs to the model are i) a set of words
with known affective scores, named an affective lexicon, ii) a
DSM trained on a general-purpose corpus and iii) a mapping
from the semantic to the affective space in the form of trainable
weights.

Fig. 1. Representation of the semantic-affective model.



A. Semantic-Affective Model

1) Word-level scores: The words affective scores are es-
timated using the semantic-affective model directly. Firstly,
the model selects a subset of representative words from
the affective lexicon that correspond to words with extreme
affective ratings, named seed words. Then, the affective score
for an unknown word is generated as a linear combination
of the seed words affective scores and their similarity to the
unknown word, weighted by trainable weights,

v(wj) = α0 +

N∑
n=1

αi v(si) S(si, wj ;λ), (7)

where wj is the word whose affective score we aim to estimate,
s1, ..., sN are the seed words, αi is the weight corresponding
to seed word si, v(si) is the valence rating for seed word si
and S(si, wj ;λ) is the semantic similarity between seed word
si and unknown word wj from a DSM λ. The α weights
are learned by Mean Squared Error minimization via Ridge
Regression on (7).

2) Sentence-level scores: Based on the principle of compo-
sitionality [39] we can estimate the meaning of a sentence as
the sum of the meaning of its parts. Consequently, the affective
score of a sentence can be computed using three word-based
fusion models, as proposed in [38]:

i) Linear Fusion

v(s) =
1

N

N∑
i=1

v(wi) (8)

ii) Weighted Fusion

v(s) =
1∑N

i=1 |v(wi)|

N∑
i=1

v(wi)
2 sgn(v(wi)) (9)

iii) Non-linear Max Fusion

v(s) = max
i
{|v(wi)|} sgn(v(wz))

wz = argmax
i
{|v(wi)|},

(10)

where v(wi) is the valence score of word wi, N is the total
number of words in a sentence and sgn(x) is the signum
function. Linear fusion, defined in (8), equally weights the
affective scores of the words in a sentence to produce a
sentence score. Weighted fusion, defined in (9), weights more
words with higher absolute affective scores and max fusion,
defined in (10), considers only the word wz with the maximum
absolute affective score in the sentence.

3) Affective Mixture Model: Each sentence s, the affective
score of which we aim to estimate, is given as input to a
trained topic model. A list of candidate topics and posterior
probabilities is produced, based on the likelihood of the topics
being discussed in the sentence. A mixture model is used to
estimate the similarities between the words of the sentence
(unknown words wj) and a set of seed words (known words
si). The topic similarities are incorporated into (7) to estimate
sentence words affective scores, as shown in (11). Finally,

using a word fusion scheme (8)−(10) we compute the affective
rating of the sentence,

vadapt(wj) = α0 +

N∑
n=1

αi v(si) SAvgSimC(si, wj ;LT ), (11)

where v(si) is the valence score of seed word si, αi is the
weight of seed word si, SAvgSimC(si, wj ;LT ) is the adapted
semantic similarity between seed word si and sentence word
wj , as resulted from (3), and vadapt(wj) is the final adapted
valence score for a sentence word. The use of AvgSimC is
based on its good performance reported in the literature.

V. EXPERIMENTS AND EVALUATION

In this section, the experimental settings along with the
evaluation results are briefly presented.

A. Experimental Settings

1) Corpora: We used two generic corpora in English to
train the LDA-based model and create the topic-specific sub-
corpora. First, we used a web-harvested corpus (Web) consist-
ing of 116 million sentences created as follows [40]: Starting
from a lexicon, an individual query was formulated for each
lexicon entry and the 1000 top ranked results (document snip-
pets) were retrieved and aggregated using the Yahoo! search
engine. Second, we used the English Wikipedia3, containing
8.5 million articles. During the training of the topic model,
we used the articles found in the Wikipedia corpus, while
for the Web corpus we used pseudo-documents constructed as
groups of snippets retrieved by the same search query (i.e.,
the grouped snippets are topically related).

2) Topic-modeling: The Gensim Toolbox [41] was used for
topic modeling based on LDA. We experimented with up to
100 topics, with 200 model iterations, while the rest of Gensim
parameters were fixed to their default values.

3) Topic-specific sub-corpora: Regarding the creation of
topic-specific sub-corpora (described in Section III-B), the in-
dividual sentences were classified for each corpus adopting the
soft-clustering scheme4. Approximately 90 million sentences
were extracted from the Wikipedia articles using the University
of Illinois sentence segmentation tool5. The h threshold used
in this process was set to 0.1 after an empirical analysis of
the created sub-corpora.

4) DSMs: All the DSMs in this work were created using
Google’s implementation of word2vec6 and the Continuous
Bag-of-Words (CBOW) approach for the extraction of con-
textual features. We built two baseline DSMs using the afore-
mentioned corpora without applying topic modeling. We used
the baseline models for setting the number of dimensions of
the feature space (300 and 500 for Web and Wikipedia corpora,
respectively) and the size of the context window (five for
both corpora). This was done with respect to various datasets

3https://dumps.wikimedia.org/enwiki/20160720/
4The hard-clustering approach was found to yield lower performance

compared to the soft-clustering one.
5https://cogcomp.cs.illinois.edu/page/tools view/2
6https://code.google.com/archive/p/word2vec/



dealing with word semantic similarity. The default settings
were used for all other word2vec parameters. These parameters
were fixed for each corpus and used during the training of the
respective topic-specific DSMs (TDSMs).

5) Semantic similarity: The word similarities incorporated
in (1)−(6) were computed by taking the cosine of their
respective vectors, which correspond to the word embeddings
computed by word2vec for each sub-corpus. For the Linear
Regression model (6), we used the Leave-One-Out method on
MEN dataset with 2000 pairs for training and 1000 pairs for
testing. In order to test on the WS-353 dataset, the entire MEN
dataset was used for training. The performance of the proposed
topic-based mixture model was evaluated for the task of word
similarity computation with and without context information,
on the datasets described in Table I.

TABLE I
DATASETS USED FOR IN-CONTEXT AND OUT-OF-CONTEXT SEMANTIC

SIMILARITY COMPUTATION.

Dataset Pairs Similarity Range Context

MEN [42] 3000 [0, 50] no
WS-353 [43] 353 [0, 10] no
SCWS [18] 2003 [0, 10] yes

For the datasets that provide words in isolation (MEN
and WS-353) the MaxSim metric (2) is reported. For SCWS
dataset, context-dependent metrics are reported (3) and (4),
along with the AvgSim out-of-context metric (1) in order to
compare with the literature. To experiment with the fusion
model (5) we used different combinations of topic groups,
from 5 to 100 topics. The Spearman correlation between
the automatically computed similarity scores and the human
similarity ratings is the evaluation metric for all datasets.

6) Affective Model: The semantic-affective model requires
an affective lexicon. We selected the Affective Norms for
English Words (ANEW) [44] similarly to [45]. The mapping
from the semantic to the affective space was computed with
600 seed words using similarities from a global DSM trained
with word2vec on the entire Web corpus. We grounded all
negative semantic similarities to zero and applied MSE Ridge
Regression to train the α weights.

In order to evaluate the proposed model we used the
SemEval 2007 Task 14 dataset [46]. The dataset includes 250
annotated sentences for training and 1000 sentences for testing,
from news headlines. Each sentence is associated with a sen-
timent score, in the valence dimension, in range [−100, 100]
which was rescaled to [−1, 1] and represents scores from
highly negative to highly positive headlines. We measured the
Spearman correlation ρ score with ground truth valence scores
provided by the dataset. We used only the Web-based corpus
for these experiments considering its performance for the out-
of-domain datasets in the semantic similarity task.

B. Evaluation Results

1) Semantic Similarity: In Table II the performance of the
proposed approach, topic-specific DSMs (TDSMs) (1)−(4)

and the corresponding variations, TDSMs-Fuse (5) and
TDSMs-LR (6), is presented for different datasets and cor-
pora. Additionally, the performance of a baseline model that
utilizes a single topic (No Topics) is reported. The models are
compared with various approaches proposed in the literature.

TABLE II
PERFORMANCE COMPARISON BETWEEN DIFFERENT APPROACHES AND

DATASETS FOR SEMANTIC SIMILARITY COMPUTATION, IN TERMS OF
SPEARMAN’S ρ CORRELATION.

Out-of-Context In-Context

Approach WS-353 MEN
SCWS

MaxSimC AvgSim AvgSimC

[18] 0.713 − − 0.628 0.657

[20] − − 0.636 − 0.654

[21] − − − 0.662 0.689

[19] 0.709 − − 0.673 0.693

[23] 0.678 − 0.536 0.646 −
[24] 0.779 0.805 0.589 − 0.624

[25] 0.639 0.646 − − 0.657

[28] − − − − 0.697

[27] 0.739 − 0.662 − 0.664

[14] − − 0.679 − 0.695

[13] − − 0.673 − 0.681

[26] − − − 0.689 0.698

[31] − 0.786 − 0.708 0.715

[29] − − − − 0.709

[30] − − − − 0.699

Web Corpus

TDSMs 0.722 0.800 0.678 0.678 0.702

TDSMs-Fuse − − 0.674 0.6764 0.705

TDSMs-LR 0.727 0.838 − − −
No Topics 0.703 0.773 0.659

Wikipedia Corpus

TDSMs 0.698 0.753 0.683 0.696 0.701

TDSMs-Fuse − − 0.6814 0.685 0.707

TDSMs-LR 0.695 0.796 − − −
No Topics 0.644 0.731 0.669

The proposed topic-based models (TDSMs) outperform the
baseline for all datasets and corpora. For the MaxSimC metric
(2) the model achieves the best performance (0.683), regarding
the SCWS dataset. For the other two metrics, AvgSim (1) and
AvgSimC (3), the proposed approach achieves 0.696 and 0.702
correlation being close to the top performing systems (0.708
and 0.715, respectively). The fusion model (5) further im-
proves the performance of the TDSMs model for the AvgSimC
metric in both corpora (0.705 and 0.707, respectively).

Concerning the out-of-context datasets, the Linear Regres-
sion model (TDSMs-LR) achieves state-of-the-art performance
(0.838 correlation) for MEN dataset exceeding all models pro-
posed in the literature. The same approach ranks third (0.727)
compared to the top performing model of [24], regarding WS-
353.

Fig. 2a and 2b illustrate the performance of the TDSMs-LR
model, as a function of the number of topics. Regarding the
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Fig. 2. Spearman ρ correlation for MEN and WS-353 datasets as a function of the number of topics using the Linear Regression Topic DSMs model
(TDSMs-LR): (a) Web corpus, (b) Wikipedia corpus. The baseline corresponds to a model with a single topic.
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Fig. 3. Spearman ρ correlation for SCWS dataset using the Topic DSMs mixture model (TDSMs) as a function of the number of topics: (a) Web corpus,
(b) Wikipedia corpus. For MaxSimC metric (2) only the topic with the maximum posterior probability is considered, for AvgSim (1) all topics contribute
equally to the semantic similarity computation and for AvgSimC (3) each candidate topic is weighted by the corresponding posterior probability. The baseline
corresponds to a model with a single topic.

MEN dataset, the proposed approach is shown to outperform
the baseline for all number of topics for both corpora. The top
correlation score (0.838) is achieved for 40 topics using the
Web corpus. For the WS-353 dataset, the same combination
of topics and corpus provides the top performance (0.727).
Overall, the Web corpus appears to yield higher performance
compared to the Wikipedia corpus. For larger number of topics
(up to 100 – although not shown here) we observed correlation
scores comparable to the performance at 60 topics for all
datasets and corpora combinations.

The performance of the TDSMs model, for each semantic
similarity metric, is depicted in Fig. 3a and 3b as a function of
the number of topics for the SCWS dataset. For both corpora,
the top performance (0.702 and 0.701) is achieved by the

AvgSimC metric when utilizing 40− 50 topics.
2) Sentiment Classification: Table III reports the results of

the semantic-affective model on the SemEval 2007 Task 14
dataset. It is observed that the top performance is achieved by
the use of 30 topics for all three fusion schemes exceeding the
baseline (one topic). Specifically, the highest correlation score
(0.650) is achieved by the Weighted Fusion scheme.

VI. DISCUSSION

The improvement over the baseline performance, achieved
by the proposed approach for the semantic similarity compu-
tation task, was clearly demonstrated through the use of three
datasets and corpora. We observed that the top performance
(0.727), achieved for the WS-353 dataset, is lower compared to
the highest correlation score (0.838) obtained for MEN. This



TABLE III
SPEARMAN ρ CORRELATION FOR SENTENCE AFFECTIVE SCORE

ESTIMATION ON THE SEMEVAL 2007 TASK 14 DATASET.

Number of Topics Linear Fusion Weighted Fusion Max Fusion

1 0.614 0.627 0.543

10 0.637 0.595 0.563

20 0.626 0.639 0.572

30 0.646 0.650 0.603

40 0.614 0.617 0.551

50 0.641 0.634 0.586

60 0.605 0.608 0.544

can be attributed to the different dataset designs, e.g., the type
of semantic relationship, as well as the procedure followed
for the collection of human ratings. A critical review of such
factors is provided in [47]. Overall, the reported improvement
for the MEN dataset is statistically more significant compared
to the case of WS-353 due to the larger size of the MEN
dataset (i.e., 3000 vs. 353 pairs).

The superiority of the Web corpus, compared to the
Wikipedia corpus, for the task of out-of-context semantic
similarity computation, can be explained by the underlying
corpus creation process. The collection of web document
snippets (i.e., a minimum number of 1000) yielded a corpus
that deviates from the typical distribution of word frequencies
(Zipf law). Specifically, in terms of word frequency statistics,
what differentiates the Web corpus from traditional corpora is
that words included in the corpus have a minimum number
of 1000 occurrences. This applies even for the rarest words
included in the lexicon used for the creation of web search
queries (for details see [40]). As a result, the respective DSMs
encode a wide spectrum of word senses ranging from highly
frequent to less frequent word senses. This characteristic yields
very good performance of the out-of-context similarity task,
where the similarity estimation is not conditioned on specific
contexts (senses).

The number of topics constitutes a key parameter of the
proposed approach. The identified topics are used for corpus
filtering (i.e., creation of sub-corpora) upon which the creation
of DSMs is based. In this framework, when computing the
similarity between a word pair, we argue that the exploited
sub-corpus exhibits two properties: i) The sub-corpus should
be semantically coherent, i.e., the two words should appear
with their closest word senses, and ii) adequate data should
exist enabling the computation of DSMs. Typically, a larger
number of topics improves the semantic coherence of the
respective sub-corpus (increased topic specificity), but it may
cause the fragmentation of the training data lowering the
quality of the semantic models.

In order to overcome this issue, the linear regression ap-
proach (6) is suitable for selecting the best similarities from the
respective topic-based DSMs, for pairs without context. The
method surpasses the baseline for very small number of topics
but seems to work better for a larger number of topics despite
the data fragmentation. This behavior can be explained by

considering that without a given context, a word could have an
arbitrary number of senses. An augmented sense-space enables
to estimate more accurately the general similarity of a pair as
a linear combination of different sense-related similarities.

The fusion model (5) provided the best results when all
topic groups were used (5 to 100 topics). This is expected as
it resembles the functionality of a hierarchical topic model.
Hierarchical topic models relax the hypothesis of a single
distribution over a corpus. By selecting the maximum simi-
larity over different possible distributions, the actual number
of senses assigned to each word can be approached.

Regarding sentiment classification, the weighted fusion
scheme (9) provided the best results, as more strongly affective
words influence the overall sentiment of the sentence. The
experimental findings suggest that 30 is the total number of
senses that can be found in the dataset. The two-step process
for calculating topic-adapted similarities ensures that for a
given sentence, the most semantically relevant topic-DSMs
will be used to estimate the representations of its words. This
is achieved by taking the thematic domain under which the
sentence belongs into consideration using the LDA algorithm.

VII. CONCLUSIONS

In this work, a mixture model of topic-based DSMs was
proposed for the computation of semantic similarity between
words and the estimation of affective scores for words and
sentences. The proposed mixture model was evaluated on out-
of-context and in-context datasets. It was shown to outperform
the baseline (single topic) model. The good performance of
the mixture model can be attributed to the creation of sub-
corpora where the words of interest appear with topic-related
senses. Furthermore, we incorporated the proposed mixture
model into an affective model for estimating sentence-level
affective scores. This improved the baseline by 4%.

Future work includes the automatic estimation of the opti-
mal number of topics using semantically-driven criteria. Also,
we aim to investigate the normalization and fusion of generic
and topic-specific word embeddings according to the polysemy
degree of the words subjected to similarity computation.
Finally, we intent to validate the universality of the proposed
model by experimenting with corpora and evaluation datasets
in languages other than English.
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