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Abstract

In this paper, the AM—FM modulation model and a multiband demodulation analysis scheme
are applied to formant frequency and bandwidth tracking of speech signals. Filtering by a bank
of Gabor bandpass filters is performed to isolate each speech resonance in the signal. Next,
the amplitude envelope (AM) and instantaneous frequency (FM) are estimated for each band
using the energy separation algorithm (ESA). Short-time formant frequency and bandwidth
estimates are obtained from the instantaneous amplitude and frequency signals; two frequency
estimates are proposed and their relative merits are discussed. The short-time estimates are
used to compute the formant locations and bandwidths. Performance and computational issues
of the algorithm are discussed. Overall, multiband demodulation analysis (MDA) is shown to
be a useful tool for extracting information from the speech resonances in the time-frequency

plane.

PACS number: 43.72.Ar

Introduction

Motivated by several nonlinear and time-varying phenomena during speech production, Mara-
gos, Quatieri, and Kaiser (1991, 1993a) proposed an AM-FM modulation model that represents a
single speech resonance r(¢) as a signal with a combined amplitude modulation (AM) and frequency

modulation (FM) structure
() = alt)cos(2rlft + [ alr)dr]+6) (1)

where f, 2 Fis the “center value” of the formant frequency, ¢(t) is the frequency modulating signal,
and a(t) is the time-varying amplitude. The instantaneous formant frequency signal is defined as
f(t) = f-+ q(t). Finally, the speech signal s(t) is modeled as the sum s(t) = S0, 71(t) of N such
AM-FM signals, one for each formant.

To obtain the amplitude envelope |a(?)| and the instantaneous frequency f(¢) signals from a
speech resonance 7(t), a demodulation algorithm must be used. In addition, a filtering scheme is
needed to isolate a single resonance signal () from the speech signal before demodulation can be
performed. These two steps of speech analysis in the framework of the AM—FM modulation model

were systematically introduced by Bovik, Maragos and Quatieri (1993) and will be henceforth
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referred to as multiband demodulation analysis (MDA). The representation of a speech signal
s(t) by the formant amplitude envelope and instantaneous frequency signals is rich because it
reveals both the spectral structure and the excitation timing information of different formant bands.
The modulation model can also account for nonlinear phenomena during speech production, e.g.,
energy transfer among excitation source(s) and resonators in the vocal tract. Teager and Teager
(1990) presented experimental evidence of vorticity and unstable separated airflow during vowel
production; as a result the energy and frequency of speech resonances may vary with time (Maragos
et al. 1993a). Further, Ananthapadmanabha and Fant (1982) have shown that source-vocal tract
interaction gives rise to a frequency modulation component in the resonant frequencies, i.e., f(%)
is time-varying within a pitch period. Finally, as the vocal tract shape changes during phonemic
transitions, flow instabilities can arise (Tritton 1988). The AM-FM modulation model can analyze
such phenomena (indirectly) by measuring the modulations present at each speech resonance.

Formant tracking is an important speech analysis problem since formant location is a very
important cue for human and machine speech recognition. In addition, formant trajectories have
been used successfully in both speech coding and speech synthesis applications. Most formant
tracking algorithms are based on linear prediction (LP) analysis (McCandless 1974; Duncan and
Jack 1988) and encounter problems with nasal formants, spectral zeros, and bandwidth estimation.
These deficiencies stem from the fact that LP is a parametric method that does not model spectral
valleys; in addition, LP is a linear model unable to adequately model speech acoustics. One can
overcome some of the deficiencies of LP by using a pole-zero model for formant tracking (Toyoshima
et al. 1991). Other more complex formant tracking algorithms use the extended Kalman filter
(Niranjan and Cox 1994) or hidden Markov models (Kopec 1986). Alternatively, we propose here a
multiband demodulation approach to formant tracking in the framework of the AM—-I"M modulation
model that is easy to implement and overcomes most of the deficiencies of LP.

In this paper, we combine the amplitude envelope |a(?)| and the instantaneous frequency f(?)
signals of a resonance r(?) into formant frequency and bandwidth estimates. We propose two
short-time frequency measures for estimating the average frequency of a speech band: the mean
instantaneous frequency, which has been used for formant tracking by Hanson et al. (1994) and
the mean amplitude weighted instantaneous frequency, a time domain equivalent of the first central
spectral moment (Cohen and Lee 1992). Based on the weighted frequency estimate, the modulation
model, and a multiband filtering demodulation scheme, we propose the multiband demodulation

formant tracker. The algorithm produces reliable formant tracks and realistic formant bandwidth
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estimates. In addition, it is simple, easy to implement, and avoids most of the drawbacks of
LP-based formant trackers.

The organization of the paper is as follows. First, the analysis tools of the modulation model are
presented, i.e., multiband filtering and demodulation. In Section II, the unweighted and weighted
short-time average frequency estimates are proposed. The performance of the formant frequency
estimates is evaluated for both synthetic and real speech signals. The multiband formant tracking
algorithm is introduced in Section III. The speech signal is analyzed through a bank of Gabor filters,
each band is demodulated, and the formant frequency and bandwidth estimates are computed for
each band. Next, a decision algorithm is presented that converts the short-time estimates to
raw formants and, ultimately, to formant tracks. Finally, in Sections IV and V performance and

implementation issues are discussed.

I Multiband Filtering and Demodulation

A speech resonance is extracted from the speech signal through filtering. A real Gabor bandpass

filter is used for this purpose with impulse response h(t) and frequency response H(f)

h(t) = exp(—a?t?)cos(2rvt) (2)
1) = 3 (o [ e [T @)

where v is the center frequency of the filter chosen equal to the formant frequency F, and « is the
bandwidth parameter. The effective RMS bandwidth of the filter was defined by Gabor (1946) as
V27 times the RMS bandwidth, and is equal to a/v/27. In discrete time, the impulse response is
a sampled and truncated version of Eq. (2).

Although bandpass filters with an abrupt frequency cutoff are typically used in most analysis-
synthesis systems, we find that the Gabor filter by being optimally compact and smooth both
in the time and frequency domains provides accurate amplitude and frequency estimates in the
demodulation stage that follows. In Bovik et al. (1993), one can find a detailed discussion on the
advantages of Gabor wavelets for multiband energy demodulation.

The energy separation algorithm (ESA) was developed by Maragos, Kaiser and Quatieri (1993a)
to demodulate a speech resonance r(t) into amplitude envelope |a(?)| and instantaneous frequency
f(t) signals. The ESA is based on an energy-tracking operator invented by Teager and systemati-

cally introduced by Kaiser (1990). The energy operator tracks the energy of the source producing

J. Acoust. Soc. Am. 4 A. Potamianos and P. Maragos



an oscillation signal s(¢) and is defined as

where $ = ds/dt. The ESA frequency and amplitude estimates are

R T I
2\ i) = sy <0 Q

Similar equations and algorithms exist in discrete time (Maragos et al. 1993a, 1993b). The ESA is

simple, computationally efficient, and has excellent time resolution.

An alternative way to estimate |a(?)| and f(¢) is through the Hilbert transform demodulation
(HTD), i.e., as the modulus and the phase derivative of the Gabor analytic signal (Papoulis 1984).
In Potamianos and Maragos (1994b), it is shown that the HTD and the ESA produce similar results
for speech resonance demodulation, but the HTD has higher computational complexity. Further,
the performance of both the HT'D and (especially) the ESA is poor for a low first formant frequency.
When the first formant frequency is close to the fundamental frequency, the HTD provides smoother
estimates for the first formant amplitude and frequency signals. The HTD will be used occasionally

in this paper.

II Formant Frequency and Bandwidth Short-Time Estimates

Simple short-time estimates for the frequency F’ and bandwidth B of a formant candidate, re-

spectively, are the unweighted mean F,, and standard deviation B, of the instantaneous frequency

signal f(t)

Fy= 4 [ofT f(1) dt (6)
[BJ? = % [T (f(t) - F.)? dt (7)

where 15 and T are the start and duration of the analysis frame, respectively. Alternative estimates

2

are the first and second weighted moments of f(¢) using the squared amplitude [a(?)]* as weight

J%ZLTTﬂﬂawa

(8)

[By]? = f:OO+T [(a(t)/2m)? + (f

(9)

where the additional term (a(t)/27)? in B, accounts for the amplitude modulation contribution to

the bandwidth (Cohen and Lee 1992)
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The following example explains the behavior of F, vs. F,. Consider the sum z(¢) of two
sinusoids with constant frequencies f; = 1.5 kHz and f; = 1.7 kHz, and time-varying amplitudes
ai(t), ag(t)

z(t) = a1(t) cos[2m f1t] + aa(t) cos[27 fot] ¢ € [0,0.1] sec (10)

where a1(t) = 10¢t, ag(t) = 1 — 10¢, so that for the first half of the time interval (0 to 50 msecs)
the second sinusoid f; is dominant, while for the second half (50 to 100 msecs) f; dominates.
In Fig. 1 (a)-(d) we display the amplitude envelope |a(?)| and the instantaneous frequency f(t)
of z(t) computed via the HTD and the ESA. The “beating” (in and out of phase) of the two
sinusoids manifests itself clearly at the amplitude envelope contours shown in (a), (b). At envelope
maxima the instantaneous frequency computed via the HTD (shown in (c)) is equal to the average
(amplitude weighted) frequency of the two sinusoids f = (a1 f1 + a2 f2)/(a1 + az), while at envelope
minima f presents spikes of value f = (a1fi1 — azf2)/(a1 — ag), i.e., the spikes point towards the
frequency of the sinusoid with the larger amplitude (see Appendix A). The ESA and HTD frequency
estimates take similar values, yet the orientation of the instantaneous frequency spikes in (c), (d) is
somewhat different. As discussed in the appendix, the spikes in the ESA estimate of f point toward
the frequency of the sinusoid with the larger amplitude frequency product (the turning point in
(d) is where the dotted lines cross), i.e., the spikes point towards the frequency of the sinusoid
produced by the source with the highest energy.

The short-time estimate F,, computed by the ESA and the HTD is shown in Fig. 1(e); Fy
locks onto the sinusoid with the greater amplitude (amplitude frequency product for the ESA).
The weighted estimate F,, shown in (f), provides a more “natural” short-time formant frequency
estimate because the spikes of the instantaneous frequency correspond to amplitude minima, and get
weighted less in the F,, average. Actually, F, is the mean weighted frequency of the two sinusoids,
with weight the squared amplitudes. Note that the ESA short-time estimates take slightly greater
values than the HTD ones, especially when a; ~ ag (see explanation in the appendix).

These results can be generalized to the short-time frequency estimates of speech resonances by
use of a sinusoidal speech model. A speech signal can be modeled as a sum of sinusoids with slowly
time-varying amplitudes and frequencies (McAulay and Quatieri 1986); in particular, a speech
resonance can be modeled as a sum of a few sinusoids. The behavior of the F,, F,, estimates for
a speech formant can then be viewed as a generalization of the two sinusoids case analyzed above.
For a speech resonance signal, I, has the tendency to lock on the frequency with the greatest

amplitude in the formant band, while F, weights each frequency in the formant band with its
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squared amplitude.

In Fig. 2(a), we show the Fourier spectrum of a 25 msecs speech segment and the frequency
response of the Gabor filter centered at v = F = 1600 Hz with effective RMS bandwidth of 440
Hz. The Fourier spectrum of the formant band (Gabor filtered signal) along with the short-time
frequency estimates F, and F), are shown in (b). Note that I}, locks onto the harmonic with the
greatest amplitude in the spectrum, while F,, provides an “average” spectral frequency, a more
accurate formant frequency estimate. In Fig. 2(c) and (d) we use a Gabor filter that is centered
at 1300 Hz, 300 Hz off the formant frequency. F, still locks on the harmonic with the greatest
amplitude in the spectrum, which is the major formant harmonic. The weighted estimate F,,, being
an “average” frequency, deviates from the formant frequency by almost 200 Hz. In this case, the
spikes of the instantaneous frequency point towards the formant and the unweighted estimate F),
is a better formant estimate than F,,. There are cases, though, where a single prominent harmonic
does not exist “inside” the Gabor filter; there the behavior of F), is unpredictable and thus unstable.

The advantages of the F), estimate are that it is computationally simple, conceptually attractive,
and that it converges faster to the formant frequency in an iterative formant tracking scheme (see
for example Hanson et al. (1994) and Section IV). The weighted frequency estimate Fy, provides
more accurate formant frequencies and is more robust for low energy or noisy frequency bands.

Similarly, the B,, bandwidth estimates is more robust than the B, estimate. For example, in
Fig. 1(d), (e) we display B, and B, (computed via the HTD) for the sum of two sinusoids of
Eq. (10). The bandwidths are shown as “error bars” around their respective frequency estimates.
Note that for a; = ay (i.e., when there is not a single prominent harmonic in the spectrum) B,
takes unnaturally large values. As noted below, B, is the RMS formant bandwidth. Henceforth,
B, is used as the formant bandwidth estimate.

The (squared amplitude) weighted estimates F, and B, are time domain equivalents of the
first and second central spectral moments of the signal (Ville 1948; Mandel 1974; Cohen and Lee
1992; Potamianos and Maragos 1994b). This explains why the weighted estimates are more robust
than the unweighted ones. It also offers an alternative way of computing the F,, and B, estimates
in the frequency domain (see Section V). Note that since B,, equals the second spectral moment,
By, is by definition the RMS bandwidth of the signal.

Overall, the HTD and the ESA provide similar frequency and bandwidth short-time estimates,
while the ESA has smaller computational complexity and better time resolution (Potamianos and

Maragos 1994b). According to the ESA error bounds formulated by Maragos et al. (1993a) the
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performance of the ESA deteriorates as the carrier frequency (formant) approaches the modulation
frequency (fundamental). Thus for frequency bands centered close to the fundamental frequency
the HTD can produce smoother estimates than the ESA, when a careful and computationally
expensive implementation is used for the discrete-time HTD. In practice, for frequency bands in
the 0-500 Hz range, the short-time frequency and (especially) bandwidth estimates B,, are more
accurate when computed by the HTD than the ESA. If accurate formant bandwidth estimates are
needed in this low frequency range the HTD should be used for demodulation; otherwise the ESA

should be used for computational efficiency.

IIT Multiband Demodulation Formant Tracking Algorithm

Next, a parallel multiband filtering and demodulation scheme for formant tracking is proposed. The
speech signal is filtered through a bank of Gabor bandpass filters, uniformly spaced in frequency
with (typical) effective RMS Gabor filter bandwidth of 400 Hz. The amplitude envelope |a(t)]
and instantaneous frequency f(t) signals are estimated for each Gabor filter output. Short-time
frequency I, (t,v)and bandwidth B, (t,v) estimates are obtained from the instantaneous amplitude
and frequency signals (Eqs. (8), (9)) for each speech frame located around time ¢ and for each
Gabor filter centered at frequency v. The time-frequency distributions Fi,(¢,v), B, (¢, v) have time
resolution equal to the step of the short-time window (typically 10 msecs) and frequency resolution
equal to the center frequency difference of two adjacent filters (typically 50 Hz).

In Fig. 3(c), we plot the value of the short-time frequency estimates F,,(¢, ) for every frequency
band centered at frequency v vs. time ¢ for the sentence in (a). Note that the y-axis in Fig. 3(c)
represents the range of Fy,. In (c), the formants tracks are denoted as regions of high plot density
(high concentration of frequency estimates) in a similar way that high Fourier amplitudes outline the
formant tracks at the speech spectrogram of I'ig. 3(b). We refer to the time-frequency representation
of Fig. 3(c) as the speech pyknogram (“pyknogram” stems from the Greek word “pykno” (rvkrés) =
dense). The pyknogram displays clearly the formant positions (and bandwidths) and possibly the
location of the spectral zeros (low density areas). Note that a similar time-frequency representation
has been proposed by Friedman (1985), where for each frequency band the instantaneous frequency
signal is computed, smoothed in the frequency and time domains and displayed vs. time.

In Fig. 4, we show the frequency I, (v,tp) and bandwidth B, (v,to) estimates vs. the center

frequency of the Gabor filters v, for a single analysis frame centered at tg. Note that the speech
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resonances in the Fourier spectrum approximately correspond to points where the Gabor filter
center frequency v and the short-time frequency estimate F,(v) are equal, i.e., Fi,(v) = v. These
are points where the solid line (frequency estimate) meets the dotted one (Gabor filter center
frequency). In addition, we have observed that bandwidth B, (») minima also indicate the presence
of formants.

A simple way to define raw formant estimates is as the frequencies where the Gabor filter
center frequency v and the short-time frequency estimate Fy,(v) are equal, i.e., {v : Fi,(v) = v}.
Yet, we have observed from synthetic and real speech experiments that for a “weak” formant the
{v : F,(v) = v} estimate is biased towards the frequency of a neighboring “strong” formant. As
a result the second and higher formant tracks may be inaccurate, especially, when the separation
of two formant tracks is small. More accurate formant estimates are obtained from the value of
F,(v) at inflection points, where 8% F,,(v)/dv* = 0. Inflection points of F,,(v) correspond to dense
regions of the pyknogram because the slope 0F,(v)/0v|y,, that is a measure of the concentration
of frequency estimates around v, has minima there. For best results a hybrid raw formant decision
is used: {v: F,(v) = v} for v < 500 Hz and {F,(v) : 0*F,(v)/dv* = 0} for v > 500 Hz.

For the raw formant at F,,(vo) the slope of F,,(v) at vo, 0F,(v)/0v|y, determines the promi-
nence of the formant candidate. As the slope 0F,(v)/dv|y, approaches zero, the short-time fre-
quency estimate Fy,(v) becomes almost constant for bands around vg, a sign that a “strong” formant
peak exists in the vicinity. Clearly the slope for a legitimate formant candidate ranges from zero
(most probable candidate) to one (least probable candidate). One may either use dF,,(v)/0v as a
weight in the formant tracking decision algorithm or a threshold (typically 0.6 to 0.8) can be im-
posed on the slope. In this paper, we have implemented the latter approach with good results, i.e.,
only formant candidates with slopes below 0.7 are selected as raw formants; the former approach,
although more complicated, is attractive and should be investigated in the future.

In brief, for a speech analysis frame centered at time ¢ the raw formants RF are obtained from

the time-frequency distribution F,(¢,v) as follows:

RFy, = {v: (F,(v)=v) and (31*:{;/(1/) < 0.7) and (v < 500)} (11)
REF, = {F,(v): (% =0) and (81;#1/(”) < 0.7) and (v > 500)} (12)
RF = RFy | RF, (13)

where | J denotes set union.
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In Fig. 5(a), we display the raw formant estimates for the sentence of Fig. 3(a). A three-point
binomial smoother is applied on F,(f,v) in the time domain before the raw formant estimates are
computed. In Fig. 5(c) the formant tracks (frequency and bandwidth) are shown superimposed on
the speech spectrogram. Formant bandwidths are obtained from the B, estimate. Note that B,
is an estimate of the RMS formant bandwidth.

The decision algorithm used to convert raw formants to formant tracks is similar to linear
prediction (LP) based formant tracking algorithms (McCandless 1974). Special care is taken for
nasals sounds where a “nasal formant” between the first and second formant is allowed to be “born”
and to “die”. The decision algorithm consists of three steps. First, we search for anchor formant
segments, i.e., segments where the formants tracks are well separated in frequency and well defined.
Next, the formant tracks between anchor segments are filled using continuity constraints. Finally,
we determine if a “nasal formant” is present between the first and the second formant tracks. The
decision algorithm is kept simple since the number of spurious raw formants is very small. In
general, the choice of a decision algorithm depends on the application. In our case, the formant
tracks are used for vocoding so the decision algorithm is tuned to guarantee continuous formant
tracks. Alternative formant decision algorithms based on evaluating all possible combinations of
raw formants to formant tracks can be found in the literature, e.g, hidden Markov model decoding

(Kopec 1986) or a functional minimization approach (Laprie and Berger 1994).

IV Performance and Comparisons

The multiband demodulation analysis (MDA) formant tracking algorithm was tested on synthetic
speech signals produced by a cascade formant synthesizer. An example is displayed in Fig. 6.
Speech was synthesized using the tracks shown as dotted lines in Fiig. 6(b). The formant trajectories
were designed by hand (nonsense utterance) and their 3 dB bandwidths were constant throughout
the synthetic utterance at 60, 70 and 80 Hz for the three formants. The MDA raw formant
estimates are shown in Fig. 6(a) and the resulting formant tracks are shown at (b), (c) as solid
lines. The algorithm produced good formant estimates and was able to accurately track rapidly
evolving formant tracks and weak formants. Formant merging occurred for frequency separation
less than approximately 150 Hz, as shown for the second and third tracks in Fig. 6(b). In this case,
increased frequency discrimination can be obtained by decreasing the bandwidths of the filters in

the filterbank. The formant bandwidth estimates shown as “error bars” in Fig. 6(c) were also
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accurate. An empirically determined bandwidth correction factor was applied in regions where
formant variations were greater than 100 Hz/10 msecs to compensate for overestimated bandwidth
values.

Overall, the MDA produced accurate formant frequency and bandwidth estimates for synthetic
speech. The formant estimates were more accurate for lower than for higher fundamental frequency
values. In general, when the fundamental frequency is comparable to the bandwidth of the Gabor
filter, only a single speech harmonic “falls inside” the filter and the MDA tracks the most prominent
harmonic in the formant band instead of the formant frequency. In this case, the bandwidth
estimates are also noisy. For high-pitched speech more accurate formant tracks can be obtained
by increasing the bandwidth of the Gabor filters. In general, when choosing the filter bandwidth
the tradeoff between increased frequency discrimination and accurate formant estimates for high-
pitched speakers should be considered carefully.

Next the formant tracking algorithm was tested on clean and on telephone speech from the
TIMIT and NTIMIT databases, respectively, with good results. The quality of the formant
tracks was determined by superimposing the estimated formant trajectories on the speech spec-
trogram. The formant frequency and bandwidth estimates were accurate in all cases except for
high-pitched female speakers. Further, the performance of the algorithm on telephone speech sen-
tences (NTIMIT) was good. The estimated formant tracks were similar to the ones obtained from
the corresponding high-quality TIMIT sentences. Problems occurred for the third formant track
when it exceeded 2500 Hz due to the bandpass filtering effects of the telephone channel. Also, weak
formant tracks were sometimes inaccurate or lost due to noise. Overall, the MDA formant tracking
performed well for both clean and telephone speech.

Most formant tracking algorithms are based on a short-time linear prediction (LP) analysis. LP
is a parametric method that computes a predetermined number of formant estimates, independent
of the actual number of spectral peaks in the spectrum. In addition, the formant frequency accu-
racy is affected by the preemphasis and the harmonic structure of the spectrum, and the formant
bandwidth estimates are unrealistic. Finally, LP—based formant trackers encounter problems with
nasals and nasalized vowels. The multiband demodulation approach overcomes most of these prob-
lems. In Fig. 7, we display the LP raw formant frequency and bandwidth estimates for comparison
with the MDA estimates in Fig. 5. Although the long-term formant trajectory shapes look similar
(except for nasalized speech, where the MDA formant tracker sometimes produces an extra low-

frequency formant) there are some important differences over small scales. LP produces a number
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of spurious formants that may confuse the formant decision algorithm. Also, the LP raw formants
estimates are noisy, especially for weak and/or higher formants. Finally, in (b) the LP bandwidth
estimates (shown as “error bars”, scaled up four times) are inaccurate and very noisy. Overall,
the MDA formant tracking algorithm has the attractive features of being conceptually simple and
easy to implement in parallel. It behaves well in the presence of nasalization (by tracking an extra
“nasal formant”), provides good formant bandwidth estimates, and produces very few spurious raw
formants. Currently, the MDA formant tracker is being integrated into the A M-FM modulation
vocoder (Potamianos and Maragos 1994a).

An iterative demodulation algorithm for formant tracking has been proposed by Hanson, Mara-
gos and Potamianos (1994). Initial formant estimates are refined through an iterative scheme: a
Gabor bandpass filter is centered at the initial formant estimate; the speech resonance is extracted
through filtering, demodulated, and the short-time average frequency F, is computed. At the
next iteration the Gabor filter center frequency is set to the formant estimate F,. The algorithm
converges to a formant when F, does not change significantly from iteration to iteration. For the
iterative ESA the F, frequency estimate is preferred over F),, because the use of F, increases sub-
stantially the convergence speed to a formant. Overall, the MDA produces better formant estimates
than the iterative ESA especially in regions when the separation between formant tracks is small.
This is due to the improved raw formant decision algorithm of the MDA. A modified iterative ESA
algorithm that uses gradient descent to reach the local minima of dF,(v)/0v could significantly

improve the accuracy of the formant tracks produced by the iterative ESA.

V Discussion

The multiband demodulation formant tracking algorithm uses a bank of uniformly spaced Gabor
filters. Alternatively, for a small additional computational cost, a Gabor wavelet (constant-Q
filterbank) can be used. Increasing the spacing of the bandpass filters with frequency, decreases
the frequency discrimination for higher formants. This is compatible with the formant frequency
perceptual resolution (limens) of the ear. In Hanson et al. (1994), the performance of the iterative
ESA formant tracker has improved by using constant-Q filters.

As discussed in Section II, the choice of the unweighted F, vs. the weighted F,, frequency
estimates is the choice between “fast convergence” to a formant and robust raw formant estimates.

In general, for the MDA formant tracking algorithm we prefer to use the more reliable weighted
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estimate F,,. When the frequency axis is poorly sampled (i.e., when only a few Gabor filters are
used), though, F, can produce better results than F,, since F, provides good formant estimates
even when the Gabor filter is not centered exactly on the formant frequency.

We mentioned in Section II, that the F,, and B,, estimates are equivalent to the the first and
second spectral moments computed in the frequency domain via the fast Fourier transform (FI'T).
This results in significant computational savings since the Gabor filtering can be implemented by
multiplication in the frequency domain and no demodulation is needed. The F,, and B,, estimates
computed in the frequency domain take similar values to their time domain equivalents when
adequately “long” FFT implementation are used. A 1024-point FF'T gives good results for sampling
frequency at 16 kHz and a short-time analysis window of 20 msecs. From our simulations on
synthetic speech, though, we have observed that the time domain implementation is able to better
resolve “weak” formant regions. In addition, when using the time domain implementation, one
may enhance the time resolution of the formant tracks at a small computational cost by simply
decreasing the size of the short-time averaging window in a second pass of the algorithm.

Next we propose an alternative formant decision algorithm that applies image processing tech-
niques directly on the speech pyknogram. The information in the pyknogram can be mathematically
represented as a two-dimensional set in the time-frequency plane. As seen from Fig. 3(c), the for-
mant tracks manifest themselves as relatively thin and elongated geometrical structures. Formant
tracking can be performed on the pyknogram by cleaning these dense regions from the surrounding
clutter and thining them down to a single point at each time instant. Such a geometrical analysis
of the pyknogram can be rigorously quantified using the concepts and operations of mathematical
morphology. This is a powerful set-theoretic methodology for image analysis that can quantify the
shape, size, and other geometrical aspects of image objects; it has found many applications in image
processing and nonlinear filtering (Serra 1992; Maragos and Schafer 1990). As a continuation of
the work in this paper, we plan to apply algorithms from morphological image analysis for cleaning,
segmentation, and thining of the formant tracks in the pyknogram.

Finally, one could possibly use multiband demodulation for spectral zero tracking. In Fig. 3(c),
zeros sometimes manifest themselves as areas of low plot density (e.g., for nasalized sounds an anti-
formant can be observed between the second and the third formant track). More work is underway

for anti-formant tracking using the multiband demodulation analysis (MDA).
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VI Conclusions

In this paper, we have presented a collection of ideas and algorithms for estimating the speech
formant parameters and for tracking their evolution in time. The formant tracking algorithm was
presented in the the framework of the AM—FM speech modulation model and the main speech
analysis tool used was multiband filtering followed by demodulation (MDA). We have shown that
the proposed MDA formant tracking algorithm produces good formant frequency and bandwidth
estimates for synthetic, clean and telephone speech, while overcoming most of the drawbacks of
LP-based formant trackers. In addition, we demonstrated that the MDA approach is a powerful
speech analysis tool that produces rich time-frequency representations such as the speech pykno-
gram. Further, in this paper, we have compared the unweighted mean and the (squared amplitude)
weighted mean of the instantaneous frequency for formant frequency estimation. We concluded
that the weighted estimate provides in general more reliable and accurate formant locations. The
unweighted mean is preferred when the filter (used for extracting the formant from the spectrum) is
positioned far from the formant or for increased convergence speed in an iterative formant tracking
scheme.

Overall, the multiband demodulation formant tracker produced very promising results which
suggests that the AM—FM modulation model and the energy demodulation algorithms are a useful

modeling approach for speech analysis.
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Appendix A

Consider the sum of two or more sinusoids with time-varying amplitudes a,(¢) and constant fre-
quencies f, (the analysis that follows also holds for an additional slow-varying phase modulation

term, i.e., for a sum of amplitude and frequency modulated sinusoids)

x(t) = Z an,(t) cos[27 fut + 6,]. (A1)

T
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Assuming that the bandwidth of z(¢) is much smaller than the mean carrier frequency (mean of
fn), the quadrature error will be small (Nuttall 1991) and the Gabor analytic signal z(¢) of z(?) is

2(t) & ) an(t) explj (27 ful + 6)). (A2)
The HTD estimates for the amplitude envelope |a(?)| and instantaneous frequency f(¢) are (assum-

ing that a,(t) is slowly varying compared to cos[27 f,])

B[

la()] = [2()] = (3,5 an(t) ar(t) cos2m(fn — fi)t + (6n — Ok)] )
F(O) = g L2(t) = ( Zop fo an(t) ap(t) cos2n(fu = fi)t + (6 — 00)]) / [a(t)]*.  (A4)

(A3)

For the case of two sinusoids (we set #; = #; = 0 for simplicity)

la(t)| = (a2 + a2 + 2 a1 ay cos[Awl] )2 (A5)

f(t)=(ai fi+ a3 fa+ a1 az(f1 + f2) cos[Awi]) / [a(t)]? (A6)

where Aw = 27(f; — f2). At envelope maxima and minima (cos[Awt] = £1) |a| and f take the

values

ay f1 + a2f2

= + =
|(L| |a1 a2| ’ f a j:(lg

(A7)

Thus, at envelope minima f presents spikes pointing towards the frequency of the sinusoid with
the larger amplitude a,. From Eqs. (A5) and (A6) the short-time frequency estimates [, and £,
defined in Eqgs. (8) and (9) are approximately equal to (depending on the analysis frame boundaries)

fi, a1 > a _ai fitasf,

F, =~ F, =~ Py
fo, a1 < ay 1 2

(A8)

i.e., I, locks onto the frequency component with the larger amplitude, while F,, provides a (squared
amplitude) weighted mean frequency.

One can obtain equations similar to (A3), (A4) for the ESA but they are of little intuitive value.
Instead we investigate the case of the sum of two amplitude modulated sinusoids. The value of the
amplitude envelope |a| and instantaneous frequency f at envelope maxima and minima (derived
from the continuous time ESA) are

a1f12 + a2fz2

1
2
aliag '

la] = Jax + as) f= (A9)

As a result, the frequency presents spikes at envelope minima that point toward the frequency of the

sinusoid with the larger amplitude frequency product, i.e., a, f,. Similarly, the short-time estimate
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F, is approximately equal to the frequency of the sinusoid with the larger amplitude frequency
product a, f,, while F, takes values similar to Eq. (A8).

The F,, estimate computed using the ESA takes slightly higher values than Fi, computed using
the HTD, especially for a1 ~ ay. This is due to the increased frequency weighting in Eq. (A9)
compared to Eq. (AT7). In general, the performance of the ESA and the HTD is almost identical for
speech formant demodulation provided that the fundamental frequency is much smaller than the
formant frequency. For a large-bandwidth multi-component signal, though, the two demodulation
algorithms can produce quite different results. There, the ESA frequency estimates are biased (the
ESA overestimates the frequencies as can be seen from comparing Eqs. (A7) and (A9)).

For a sum of more than two (AM-FM) sinusoids £, ~ (3, a2 f,)/ (5>, a?) (directly from
Egs. (A3), (A4)), i.e., I, weights each frequency with the squared amplitude. The behavior of I,
is more complicated. In general, if the signal consists of only one or two prominent sinusoids, F},
will lock onto the frequency of the sinusoid with the greatest amplitude. This is typically the case

for a speech resonance signal.
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Figure 3: (a) Speech signal: “Show me non-stop from Dallas to Atlanta,”

and (c)
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the short-time frequency estimates F,(t,v) for the output of 80 Gabor

filters spanning v = 200 to 4200 Hz displayed vs. time (analysis frame update is 12.5 msecs).
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Figure 7: LP raw formant frequency (a) and bandwidth (shown as “error bars”, scaled up 4 times)

(b) estimates for the speech signal shown in Fig. 3(a); LP analysis order is 12, preemphasis is 0.5,

window size is 25 msecs updated every 12.5 msecs.
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