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Abstract—In this paper, we examine how energy computation
and �lterbank design contribute to the overall front-end ro bust-
ness, especially when the investigated features are applied to
noisy speech signals, in mismatched training-testing conditions.
In prior work [1], a novel feature set called `Teager Energy
Cepstrum Coef�cients' (TECC) has been proposed, employing
a dense, smooth �lterbank and alternative energy computation
schemes. TECCs were shown to be more robust to noise and
exhibit improved performance compared to the widely-used
MFCCs. In this work, we attempt to interpret these results using
a combined theoretical and experimental analysis framework.
Speci�cally, we investigate in detail the connection between the
�lterbank design, i.e., the �lter shape and bandwidth, the energy
estimation scheme and the ASR performance under a variety of
additive and/or convolutional noise conditions. For this purpose:
(i) the performance of �lterbanks using triangular, Gabor a nd
Gammatone �lters with various bandwidths and �lter positio ns
are examined under different noisy speech recognition tasks, and
(ii) the squared amplitude and Teager-Kaiser energy operators
are compared as two alternative approaches of computing the
signal energy. Our end-goal is to understand how to select the
most ef�cient �lterbank and energy computation scheme that
are maximally robust under both clean and noisy recording
conditions. Theoretical and experimental results show that: (i)
the �lter bandwidth is one of the most important factors affecting
speech recognition performance in noise, while the shape of
the �lter is of secondary importance, and (ii) the Teager-Kaiser
operator outperforms (on the average and for most noise types)
the squared amplitude energy computation scheme for speech
recognition in noisy conditions, especially, for large �lter band-
widths. Experimental results show that selecting the appropriate
�lterbank and energy computation scheme can lead to signi�cant
error rate reduction over both MFCC and Perceptual Linear
Predicion (PLP) features for a variety of speech recognition tasks.
A relative error rate reduction of up to � 30% for MFCCs and
� 39% for PLPs is shown for the Aurora-3 Spanish Task.

Index Terms—Robustness, speech recognition, parameter esti-
mation, speech processing, spectral analysis, cepstrum analysis,
error analysis, time-frequency analysis, bandpass �lters

I. I NTRODUCTION

Robust feature extraction is a complex problem much stud-
ied over the years. Despite recent progress in the domain of
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robust automatic speech recognition (ASR), many questions,
such as how the energy estimation process and the �lterbank
design affect ASR performance under noise, especially for var-
ious levels of additive/convolutional noise and acoustic model
mismatch, remain open. The effect of noise on the features
employed in a speech recognition front-end is non-trivial and
can greatly in�uence the overall system performance. In this
context, much work has been done minimizing this mismatch
[2], [3] by using transformations of the noisy features to a
`cleaner' feature domain, and thus improving their invariability
to certain noise types. Other related work includes speech
enhancement [4], normalization of the noisy features statistical
properties [5]–[7] and dynamic feature combinations [8]. In
[9]–[11], the effect of environmental noise on the statistical
speech models was investigated and two algorithms (CDCN
and MFCDCN) were proposed for compensating it. However,
the feature robustness problem remains unsolved in a globally
optimal way. Our goal, in this paper, is to analyze both
theoretically and experimentally, how the �lterbank design pa-
rameters and energy computation scheme affect the robustness
of speech recognition systems in noisy recording conditions.

The use of �lterbanks in ASR front-ends was motivated by
the human hearing process [12]–[14], where the energy across
frequencies of the audio spectrum is resolved by using auditory
�lters. Although the human hearing process is for the most part
heavily researched, machines have been unable to match the
robustness that human beings exhibit in speech recognition
in noise [15]. Efforts to model the human audio processing
to further improve the robustness of speech recognition front-
end have had limited success, e.g., perceptual linear predic-
tion features (PLP) [16], relative spectral transform features
(RASTA) [17], dynamic spectral subband centroids [18] or
the auditory-based features [19]. However, for the past two
decades, the Mel Frequency Cepstrum Coef�cients (MFCC)
[20] have remained the most widely-used features for ASR
applications mainly because they combine good discrimination
capabilities with low computational complexity. These features
incorporate some aspects of the human hearing process, such
as the nonlinear �lter placing (mel-scale) and subband energy
estimation, and perform well in relatively clean and well-
matched conditions. On the other hand, MFCCs lack robust-
ness in adverse recording or noise mismatch conditions.

Recently, theTeager Energy Cepstrum Coef�cients (TECC)
have been proposed and shown to outperform the MFCCs,
especially in noisy recognition tasks and under mismatched
training/testing conditions [1]. The TECCs employed an alter-
native energy estimation scheme, i.e., use of the Teager-Kaiser
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instead of the square amplitude energy operator [21], and
human hearing-inspired �lterbanks, i.e., Gammatone �lters
placed on the Equivalent Rectangular Bandwidth (ERB) curve.
The ERB is a measure used in psychoacoustics, approximating
the bandwidths of the �lters in human hearing by rectangular
band-pass �lters. It was �rst introduced for speech processing
applications in [22] and [23].

The main goals of this paper are to: (i) adequately present
the TECC `family' of features, i.e., the TECCs and other front-
ends employing similar design parameters, (ii) investigate
under what noise conditions this new family of features outper-
forms the MFCCs, (iii) provide theoretical and experimental
results on the optimality of the energy computation scheme
(squared amplitude vs. Teager-Kaiser energy operator), and
(iv) investigate the optimal design of the �lterbank (number
of �lters, �lter bandwidth and shape) for noisy speech recog-
nition tasks. Speci�cally, we compare themean Teager-Kaiser
(MTE) or mean square amplitude (MSE)energy schemes for
cepstrum-based feature extraction, when applied to speech
signals corrupted by additive and/or convolutional noise.Fur-
ther, we analyze the performance of the energy computation
schemes as a function of the �lterbank design parameters, e.g.,
bandwidth in conjunction with the noise spectral characteris-
tics. Overall, different key parameters of the feature extraction
process are investigated and ASR experiments are undertaken
to examine their impact on the corresponding recognition
results. This work builds upon theoretical results in [21].

The paper is organized in sections as follows: In Section
II, the clean speech and the harmonic noise models are
introduced. Herein, the input signals are bandpass �ltered
and the respective �lter bandwidths are examined, as well.
A uni�ed energy estimation scheme is presented, where the
Teager-Kaiser energy operator(TEO) and thesquare ampli-
tude energy operator(SEO) are only two cases of the general
scheme, Section II-C. It is shown that the energy estimation
performance is much dependent on the �lter bandwidth. The
proposed feature extraction process is presented in Section III.
In Section IV, it is investigated how additive and convolutional
noise types affect the proposed features. The performance of
these features in speech processing applications is presented in
Section V; both energy estimation and speech recognition in
noise are investigated. Finally, the conclusions and discussion
of future work are provided in Section VI.

II. BACKGROUND

In most speech processing applications, speech signalsx(t)
are �ltered by �lterbanks yieldingr j (t) = gj (t) � x(t), where
gj (t) is the impulse response of thej th analysis �lter and �̀ '
stands for convolution. The AM-FM speech model suggests
the decomposition of the speech signal intoJ (resonance
inspired) signalsr j (t), whereJ the number of deployed �lters
in the analysis �lterbank [24], [25],

x(t) �
JX

j =1

r j (t) =
JX

j =1

aj (t) cos
� Z t

0
! j (� )d� + � j

�
(1)

where aj (t), ! j (t) are the instantaneous amplitude and fre-
quency modulating signals and� j is a phase offset. Herein,

the underlying assumption is that the information-carrying
signalsaj (t); ! j (t) are slow varying compared to the carrier
frequencies. Next, we summarize the main theoretical results
from [21].

A. Harmonic Noise Modeling

An approximation of a bandpass noise signalvj (t) was
�rst proposed in [26], [27] and used in [21]. The noise
signal is modeled as a sum of stationary sinusoidsvjk (t)
(k = 1 ; � � � ; K j ), with �xed amplitudesbjk , phase offsets� jk

that are independent random variables uniformly distributed
over [� �; � ] and frequencies! jk placed equidistantly with
spacing! R ,

vj (t) �
K jX

k=1

vjk (t) =
K jX

k=1

bjk cos (! jk t + � jk ) (2)

The number of sinusoid componentsK j is given byK j ,
dB j =! R e, where B j is the j th -�lter passband. Thus, we
approximate noise with more componentsK j when the �lter
passband is broader.

B. Noisy Teager-Kaiser Energy Estimation

If we apply theTeager-Kaiser energy (TEO)operator [24]
to the bandpassed noisy signalsj (t) , r j (t)+ vj (t), its long-
term mean Teager-Kaiser energy(MTE) [21] is a sum of two
components

< 	[ sj (t)] > � < a 2
j (t)! 2

j (t) > +
X

k

b2
jk ! 2

jk (3)

where< � > denotes the time-averaging process.
The normalized deviationDT provides a measure of the

robustness of energy estimation in additive noise and is de�ned
as the ratio of the difference between the mean noisy and clean
energy estimates over the mean clean estimates,

DT [sj ; r j ] �

P K j

k=1 b2
jk ! 2

jk

< a 2
j (t)! 2

j (t) >
(4)

The normalized deviationDT is proportional to the squared
product of ! jk with the amplitude coef�cientsbjk , and
inversely proportional to the mean instantaneous frequency
! 2

j (t) weighted bya2
j (t). Therefore, theDT estimates de-

pend on therelative spectral energy distribution (within the
frequency band of interest) of the noise and speech signals,as
detailed in [21].

C. Noisy Squared Amplitude Energy Estimation

The mean squared amplitude energy(MSE) for sj (t) is
given by

< s 2
j (t) > �

1
2

 

< a 2
j (t) > +

X

k

b2
jk

!

(5)

Similarly, thenormalized deviationDS for the MSE case is

DS [sj ; r j ] �

P K j

k=1 b2
jk

< a 2
j (t) >

(6)
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The DS estimates are approximately equal to the inverse
signal-to-noise ratio (SNR) values in the �lter passband.
Henceforth, the signal arguments, i.e., the signalssj (t); r j (t),
will be ignored inDT andDS for notational simplicity.

The MTE normalized deviation (4) can be formulated as the
ratio of the2nd -order spectral centroid of the noise over the
clean signal [25], while, the MSE deviation (6) is the ratio of
the 0th -order spectral centroids [18]. We can express both of
these deviations with a compact notation

D (p) =

P
k b2

jk ! p
jR

B j
! p jX (! )j2d!

(7)

For p = 0 : D (0) � DS , whereas forp = 2 : D (2) � DT .
Based on the equations above, the spectral energy distribu-

tion (pth -order spectral moments) within the frequency band
of interest determines the relative performance of the MSE and
MTE1 estimates. In general, the MTE values present smaller
estimation errors (deviations) when compared to the MSE
ones when the high-energy noise components are concentrated
over low frequencies (within the passband), and vice-versa, all
due to the weighting term! p that affects the overall spectral
energy distribution of the input signal [21]. The MTE and
MSE estimates are obviously related, due to this term2.

D. Medium and Short-Time Properties of Energy Operators

The analysis above assumes that the duration of the aver-
aging window is long enough to ignore all transient terms.
However, the estimation errors of the MTE and MSE schemes
depend on the window length, as well. In the case when
medium- and short-time windows (less than 15 ms) are
considered, transient terms contribute to the estimation error
and should be taken into further account in the analysis. In
this context, the MTE deviation values are expected smaller
than those of the MSE ones. Finally, all the transient terms
are inversely proportional to the frequency content, e.g.,�lter
center frequency! c. Therefore, these deviation terms are
further emphasized for smaller frequency values. A more
detailed description can be found in [21].

E. Narrowband Signal Analysis

For narrowband signals the signalsj (t) is approximated
by a two-cosine sum, i.e., the noise has a single frequency
component

sj (t) = aj (t) cos (! cj t + � r )
| {z }

r j ( t ): Clean Signal

+ bcos (! cj t + � v )
| {z }
v j ( t ): Noise Signal

where! cj is the j th �lter center frequency. Then,

	[ sj (t)] � ! 2
cj a2

j (t) + ! 2
cj b2 + 2 b! 2

cj aj (t) cos(� r � � v )

Assuming that_aj (t) � 0 and•aj (t) � 0, the noisy signal MTE
estimate (3) is given by

< 	[ sj ]> = ! 2
cj

�
<a 2

j (t)> + b2�

1The relative performance of MSE vs. MTE scheme doesn't solely depend
on the signal-to-noise ratio in the frequency band.

2Higher-order derivatives of the input signal correspond tolarger values of
p, [21].

and the normalized deviationDT , (4), is given by

DT [sj ; r j ] =
b2

< a 2
j (t) >

(8)

Correspondingly, for the MSE case,

s2
j =

1
2

a2
j (t) [1 + cos (2! cj t + 2 � r )]

+
1
2

b2 [1 + cos (2! cj t + 2 � v )]

+ baj (t) [cos(� r � � v ) + cos(2! cj t + � r + � v )]

and, the MSE deviation, (6), is

DS [sj ; r j ] =
b2

< a 2
j (t) >

(9)

From (8) and (9), it is concluded that both long-termDT and
DS are equal when narrow bandpass �lters are used. Conse-
quently, no signi�cant difference is expected when employing
different energy operators on narrowband signals (this is the
case of approximately monochromatic signals). However, the
MSE estimates include time-decaying transient phenomena,
as opposed to the MTE scheme where these phenomena are
not present (in the case of shorter averaging windows). In
general, the MTE estimates are expected to present smaller
deviations than the MSE ones, as outlined in Section II-D.
The experimental veri�cation of this analysis is presentedin
Section V.

III. G ENERALIZED CEPSTRUMCOEFFICIENT FRONT-ENDS

Next, we investigate cepstral features that are computed
using different �lterbanks and energy computation schemes,
i.e., the mel Teager-energy cepstral coef�cients and their
generalizations.

A. ERB and Maximally Smooth Filterbanks

The Equivalent Rectangular Bandwidth(ERB) has been
introduced to measure the bandwidth of asymmetrical IIR
�lters, such as the Gammatone �lters. Given thatjG(! c)j is the
maximum gain of a bandpass �lter with frequency response
G(! ), reached at frequency! c, then the �lter ERBis de�ned
as

ERB =

R
jG(! )j2d!
jG(! c)j2

(10)

In other words, the ERB is the bandwidth of a rectangular
shaped �lter when its energy (the integral of its frequency
response magnitude squared) is normalized by the maximum
gain squared,jG(! c)j2. By normalizing the �lter ERBs, their
design parameters have to be modi�ed accordingly.

A Gabor �lter impulse response is given by

gGab (t) = e� b2 t 2
cos(! ct) (11)

whereb is a parameter controlling the �lter bandwidth and! c

is its center frequency. According to [28], the corresponding
ERB value isBGab = b=

p
2� .

Further, the impulse response of a Gammatone �lter is given
by

gGamm (t) = t3e� 2� 1:1019bt cos(! ct) (12)
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where b is a bandwidth controlling parameter and! c is its
center frequency. Its ERB value is given byBGamm = b [23].

When the �lters have equal bandwidth parameters-b,

BGab = 1 =
p

2� � BGamm or BGab ' 0:4 � BGamm (13)

meaning that for the same design parameterb Gabor �lters
are narrower than the corresponding Gammatone ones. By
considering (13), the Gabor �lter bandwidths should benor-
malizedby a factor of approximately (times) 2.5 to achieve
the same equivalent �ltering passband as with the Gammatone
�lter passbands. Henceforth, equal ERB values are assumed
when comparing ASR results corresponding to Gabor and
Gammatone �lterbanks.

B. Generalized Cepstrum Coef�cients

MFCCs are typically computed using a �lterbank of22� 25
triangular �lters with 50%bandwidth overlap3; the (log) mean
mel energy coef�cients are estimated and then transformed
to the Cepstrum domain via the Discrete Cosine Transform
(DCT). The feature sets analyzed in this paper, as proposed
in [1], employ smoother and broader �lters. The use of
such �lters, i.e., Gammatone or Gabor �lters, for estimating
the cepstral coef�cients, is supported by the broader �lter
approach, as presented in [29]. In addition to that, different
energy estimation schemes have been investigated, providing
additional robustness to the proposed features (depending
though, on the spectral �ngerprint of the clean and noise
signals).

The feature extraction algorithm consists of the following
steps, Fig. 1:

1) Filter the speech signal using a mel-spaced �lterbank.
The �lterbank consists of25 � 100 smooth �lters and
uses Gabor, Gammatone or Gammachirp �lters4.

2) Estimate the MTE or MSE mel-energy coef�cients of the
framed bandpassed signals.

3) Transform these energy coef�cients into the Cepstrum
domain. Only the �rst low-order cepstral coef�cients are
kept for recognition (the de facto standard is to keep the
�rst 13 coef�cients, including C0).

4) Estimate their �rst and second order time derivatives and
perform Cepstral Mean Subtraction (CMS)5.

Fig. 1. Block Diagram of the TECC Feature Extraction Process.

In [14], [19], it is conjectured that the Gammatone �lters
equidistantly placed in the mel-frequency scale, resemblethe
human ear. The �rst two of the steps substantially differentiate

3The triangular �lters present �nite passband support therefore, the overlap
is, usually, estimated over them.

4Herein, results only for the �rst two types of �lters are reported.
5The experimental results using features without CMS are similar. However,

these results appear more noisy making conclusions less clear.

the proposed algorithm from the typical MFCC algorithm. The
following two steps, i.e., the cepstral coef�cient estimation
and the truncation process, remain the same as in [20]. The
ASR results presented in [1] and in Section V below, show
signi�cant improvement, especially for recognition tasksin
noise. The additional robustness to noise can be attributed
to the use of wider �lters and the use of alternative energy
estimation schemes, i.e., the MTE scheme.

IV. ERRORANALYSIS FOR CEPSTRUMFEATURES IN NOISE

Until now, the bandpass �lters were considered ideal where
their amplitude response was rectangular with �xed amplitude
equal to unity. Herein, the aforementioned analysis is gener-
alized for a wider `family' of bandpass �lters.

Under the conditions detailed in [30], [31] for speech and
[32] for image signals, a �ltered bandpass AM-FM signalr i (t)
can be approximated by

r j (t) � aj (t)jGj [! j (t)]j cosf
Z t

0
! (� )d� + \ Gj [! j (t)] + � j g

(14)
where Gi [�] is the frequency response of thej th �lter. The
approximation is exact whenr j (t) is monochromatic, i.e.,
! j (t) = constant. Further, in the case of real, symmetric
�lters, e.g., Gabor �lters, \ Gj [! j (t)] = 0 and the �ltering
process affects only the instantaneous amplitude signala(t)
[30]. Similarly to (14), the noise signal can be rewritten as

vj (t) =
K jX

k=0

bjk jGj [! jk ]j cosf ! jk t + � jk + \ Gj [! jk ]g

(15)
In the case of �ltering the speech signals, the instantaneous
amplitude signals are given by

aj (t)jGj [! j (t)]j andbjk jGj [! jk ]j

The phase offsets, i.e.,\ Gj [! j (t)] and\ Gj [! jk ], are aver-
aged out6. Only in the cases of short- and medium-term energy
averaging, these phase offsets should be considered.

A. Cepstral Coef�cient Error Analysis

As shown above, the noisy speech energy coef�cients,
(3), (5), are the sum of the speech and the noise energy
coef�cients (given suf�cient length for the averaging window),
i.e., Ps [j; m ] = Pr [j; m ] + Pv [j; m ], where j = 1 ; � � � ; J ,
m = 1 ; � � � ; M; J the number of �lters andM the total num-
ber of frames. For the case of MTE,Pr [j; m ] = < 	 [ r j (t)] >
and Pv [j; m ] = < 	 [ vj (t)] > 7, for t 2 mth -time frame.
Henceforth, to simplify the notation we shall drop the frame
index m from all equations. Note that this analysis holds true
for each one of the frames.

With a uni�ed notation for both energy schemes, similarly
to (7), theCepstral Mel Energy Coef�cients[7], [26] are given
by

C (p)
s = W � log(P (p)

s ) (16)

6Assuming that! j (t ) is smooth enough, then\ G j [! j (t )] � constant.
7Herein, only the MTE case is presented. However, the same equation holds

true for the case of MSE, as well.
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where C (p)
s = ( C(p)

s [1]; C(p)
s [2]; � � � ; C(p)

s [I ])T is the
vector of the estimated noisy cepstral coef�cients with length
I , W is an I � J Discrete Cosine Transform matrix and
P (p)

s = ( P (p)
s [1]; P (p)

s [2]; � � � ; P (p)
s [J ])T and P (p)

r =
(P (p)

r [1]; P (p)
r [2]; � � � ; P (p)

r [J ])T are the noisy and clean
speech mel-energy coef�cient vectors estimated over theJ
�lter passbands. Depending on the energy estimation scheme,
the parameterp = 0 or 2 (whenp = 0 , we refer to the MSE
values, and forp = 2 to the MTE coef�cients). To further
simplify the notation, we shall, henceforth, drop the super-
scriptp, as well. The analysis below holds true for eitherp = 0
or p = 2 .

Eq. (16) is rewritten element-wise, as

Cs [i ] =
JX

j =1

Wij log (Ps [j ]) (17)

where1 � i � I andWij =
p

2=J � cos [�i (j � 1=2)=J].
Inspired by the analysis in [10], [11], we introduce the

Cepstral Coef�cient Deviation� C[i ] as the difference of the
noisy and the clean speech cepstral coef�cients, i.e.,Cs [i ] and
Cr [i ],

� C[i ] = Cs [i ] � Cr [i ] =
JX

j =1

Wij log
�

Ps [j ]
Pr [j ]

�
(18)

From the analysis in Section II, (18) leads to

� C[i ] =
JX

j =1

Wij log
�

1 +
Pv [j ]
Pr [j ]

�

where the quantityPv [j ]=Pr [j ] is the normalized MTE or
MSE mel energy deviations(7)), within thej th �lter passband.
Therefore,

� C[i ] =
JX

j =1

Wij log (1 + D j ) (19)

where D j , Pv [j ]=Pr [j ] is the estimated energy deviation
for the j th �lter index, assuming Pr [j ] 6= 0 ; 8j . The
� C deviation values provide an indication of how noise
(of different spectral characteristics) corrupts the MTE-and
MSE-based cepstral coef�cients. These deviations consistof a
linear combination of the log energy deviations weighted by
Wij , across all �lters. Therefore, the energy deviation values
corresponding to different frequency bins linearly affectall the
cepstral coef�cients. Consequently, smaller energy estimation
errors will yield smaller cepstral feature deviations fromthe
clean ones8.

B. Convolutional Noise Analysis

In the presence of both additive and convolutional noise the
corrupted speech signal equals tor j (t) � hj (t) + vj (t). As
de�ned in the previous sections, the normalized mel-energy
coef�cient deviation is given by:

D j =
M j [vj ] + M j [r j � hj ] � M j [r j ]

M j [r j ]
(20)

8The energy-related errors can be attributed to both the estimation process
and the existence of noise.

where r j ; vj andhj are the framed (t 2 mth time frame)
bandpassed clean speech, additive and convolutional noise
signals, respectively. Further,

M j [vj ] =
Z

B j

! p jGj (! )N (!; m )j2d!

M j [r j � hj ] =
Z

B j

! p jGj (! )X (!; m )j2jH (!; m )j2d!

and,

M j [r j ] =
Z

B j

! p jGj (! )X (!; m )j2d!

where Gj (! ) is the j th �lter frequency response andB j

its passband, whereasX (!; m ); N (!; m ) andH (!; m ) are,
respectively, the periodograms of the clean, additive and
convolutional noise signal frames, andp de�ned as above.

By substitution, we obtain

D j =

R
B j

! p jGj (! )N (!; m )j2d!
R

B j
! p jGj (! )X (!; m )j2d!

+

R
B j

! p(jH (!; m )j2 � 1)jGj (! )X (!; m )j2d!
R

B j
! p jGj (! )X (!; m )j2d!

(21)

The normalized deviations9 D j consist of two terms account-
ing for the two different noise types, i.e., the additive andthe
convolutional noise parts.

D j = D conv
j + D add

j (22)

where

D conv
j ,

R
B j

! p(jH (!; m )j2 � 1)jGj (! )X (!; m )j2d!
R

B j
! p jGj (! )X (!; m )j2d!

and

D add
j ,

R
B j

! p jGj (! )N (!; m )j2d!
R

B j
! p jGj (! )X (!; m )j2d!

Assuming thatjH (!; m )j remains almost constant for a
certain time frame and across all frequency bands, then
jH (!; m )j2 � 1 � H j and

D j = H j + D add
j

Finally, after substituting the noise model, we obtain

D j = H j +
P

k ! p
k b2

k jGj (! k )j2
R

B j
! p jGj (! )X (!; m )j2d!

(23)

The assumption of convolutional noise with constant spectral
characteristics for each time frame, adds a constant deviation
term H j to the total normalized deviation. This constant error
term can be easily removed via an energy normalization post-
processing scheme, e.g., mean value subtraction [6].

In the general case of noisy signals contaminated by both
additive and convolutional noise, the cepstral deviation� C[i ]
(19) will, now, contain an additional term (22)

� C[i ] =
JX

j =1

Wij log
�
1 + D conv

j + D add
j

�
(24)

9We assume thatD j is non-negative and in the rare occasions when it takes
negative values we suggest thresholding it.
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Similar results are presented in [9], [10] for the case of
the MFCCs. In this context, it should be highlighted the
importance of the weighting term! p that emphasizes certain
parts of the signal power spectrum (according to the values of
p) and thus, can provide smaller cepstral coef�cient deviations
� C[i ] when set accordingly. One of the paper contributions
is based on the introduction of this weight,! p, to the feature
extraction process.

V. ENERGY ESTIMATION AND SPEECHRECOGNITION

EXPERIMENTS

In this section, various parameters of the feature extraction
process are investigated experimentally in terms of noisy
cepstral coef�cient deviations from the clean case and their
respective speech recognition performance. Speci�cally,the
following parameters are evaluated: (i) the �lter shape:Gabor
or Gammatone�lterbanks, (ii) the number of �lters: ranging
from 25 to 100 �lters10, (iii) the �lter bandwidth (while
keeping the number of �lters �xed) and (iv) the energy
scheme:MTE or MSE approaches. In all cases, the �lters are
equidistantly placed following the mel frequency scale. The
bandwidth overlap is estimated by considering the �lters' ERB
values. The same design parameters are used for both Gabor
and Gammatone �lterbanks, i.e., same number of �lters, �lter
placing and normalized ERB bandwidths.

A. Experimental Setup

For the experimental part of this paper three speech
databases are used, i.e., the Aurora-3 (Spanish task), Aurora-4
and the TIMIT+Noise speech databases. The fundamental dif-
ference between these databases is that the �rst database con-
tains real-life data, while the second and third databases con-
tain data corrupted by arti�cially added noises. The Aurora-3
database is recorded inside the cabin of a moving car using
both a close-talking and a near-�eld microphone. Thus, the
data contain both convolutional and additive noise. Further,
the Aurora-4 task is a Large-Vocabulary Speech Recognition
task (LV-ASR), contrary to the rest of the tasks that have a
limited vocabulary and use all-pair grammars.

In more detail, the Aurora-3 database contains recordings of
two different microphones and three noise levels with average
SNR levels at 12, 9 and 5 dB, respectively. Three different
training-testing scenarios are examined, i.e., the well-matched
(WM), the medium-mismatch (MM) and the high-mismatch
(HM) conditions. In the WM scenario, all combinations of
microphones and SNR levels are included in both the training
and the testing sets. In the MM scenario, training and testing is
performed using only the hands-free microphone recordings.
In the HM condition, the close-talking microphone recordings
are used for training, while the hands-free recordings are used
for testing. Typically, car noise is assumed lowpass. However,
the analysis of the mean normalized power spectrum density
(PSD), shown in Fig. 2, does not fully support this assumption.
Speci�cally, a highpass noise component between1500� 2500

10In this set of experiments the bandwidth overlap percentagebetween
adjacent �lters remains �xed. Consequently, changing the number of �lters
also affects the �lter bandwidth.

Hz, is present in the high-noise scenario, and an additional
spike-like noise component around 3 kHz, can be noted for the
quiet and low-noise scenarios. The �rst highpass component
can be attributed to the wind noise from the open windows
while driving in high speed and/or the car-radio playing music,
and the second one to the engine noise. This analysis is
especially relevant for interpreting the results of the speech
recognition task; as explained in Section II, the spectral shape
of the noise determines the relative performance of theMTE-
vs. MSE-based cepstral features.
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Fig. 2. Mean Normalized PSD for the three different Aurora-3noise
conditions: quiet, low, and high noise levels. The mean PSDsare averaged
over all noise frames of the same noise condition signals.

The Aurora-4 database has been created to investigate LV-
ASR tasks in the presence of noise. The database is based
on the WSJ database and the 5k-words task for training and
testing, respectively [33]. For training, the 16 kHz sampled
noisy set is used. It contains a variety of noises added to the
clean speech, and mixes data from several microphones. The
test set was created by adding seven different noise types, i.e.,
clean, street traf�c, train station, car, babble, restaurant and
airport, to two-microphone recordings yielding 14 different
testing conditions [33]. The Language Model used is the
baseline model provided by the ETSI con�guration.

Finally, the third database (TIMIT+Noise) is created by
arti�cially adding different types of noise to the TIMIT
database. For this purpose, the NOISEX-92 noise database is
used, containing ten typical noise samples, each with different
spectral characteristics [34]. These noise signals are down-
sampled to 16 kHz and added to the speech sentences11 from
the TIMIT database, while keeping the global average SNR

11The noise signals have a duration of approximately 235 s, so aportion of
the noise signal is randomly selected and added to each speech signal. Their
sampling frequency is 19.98 kHz.



7

�xed at SNR = 5 dB12. The training is performed on the
clean TIMIT data while the test sets consist of the noise-
corrupted versions of the original TIMIT test set. Further,the
clean speech signals are used as reference for comparing the
normalized deviation and log distortion difference valuesof
the estimated features.

The HMM-based HTK Tools platform is used for all
ASR experiments. The statistical model for the Aurora-3 task
consists of 11 context-independent, left-right, word HMMs
that are trained using the ETSI WI007 training scripts. For
the TIMIT+Noise tasks, the model consists of 46 phoneme-
based, 3-state, left-right HMMs with 16 Gaussians per state.
The grammar used for both cases is the all-pair, unweighted
grammar. The MFCC, PLP, MSE- and MTE-based feature
vectors consist of 39 coef�cients, i.e., 13 cepstral coef�cients
(including C0) and their �rst and second time-derivatives.

The principal motivation behind including experiments on
both real and arti�cial data is twofold: (i) using arti�cialdata
allows for the exact computation of the deviations (from the
clean ones) for the ASR features, and (ii) using real-life data
presents different unaccounted sources of noises that degradate
the ASR performance, i.e., Aurora-3 data. On the contrary,
the underlying phenomena in TIMIT+Noise task are clearly
presented and anticipated by the theoretical analysis.

B. Speech Signal Energy Deviations

Typically, the estimation of the signal time-frequency energy
distributions is the �rst step in the feature extraction process.
We compare the MTE and MSE computation schemes across
all �lters in the presence of additive noise. The normal-
ized MTE and MSE energy deviations de�ned in (4) and
(6) are actually the inverse subband SNRs, where the mel-
energy coef�cient deviation from the clean estimates is the
`noise' and the clean-case estimate is the `desired signal'.
Consequently, the SNR of the MSE scheme is de�ned13 as
SNRS , � 10 log10( bDS ), and similarly for the MTE case,
i.e., SNRT , � 10 log10( bDT ). Energy estimation results are
presented in terms ofmean SNR differences(in dBs), or
SNRS � SNRT . The differences assume negative values only
when the averaged MTE-based deviations are smaller than
the corresponding MSE ones. In that sense, the Teager-Kaiser
operator provides more robust energy estimates than those
based on MSE.

1000 instances of the phonemes/aa/ and/sh/ are extracted
from the TIMIT+Noise database for each of thebabble, car
andwhite noise types. Two different mel-spaced Gammatone
�lterbanks, using 25 or 100 �lters (with constant3 dB-
bandwidth overlap of50%) are used [1]. MTE and MSE
coef�cients are computed for each bandpassed signal using
an analysis window of 30 ms, updated every 10 ms. The
log root-mean-square (RMS) differences between the true and
estimated MTEs and MSEs are computed and averaged over
all frames and 1000 phonemic instances.

12The SNR value is estimated as the mean ratio of the speech overthe
noise signal energies per frame. Then, the noise signals arescaled so that
the global mean SNR is 5 dB. Therefore, this value refers to the wide-band
speech signal and suggests that the SNR level is, on the average, 5 dB.

13The “b” stands for mean estimates averaged over 1000 phoneme instances.

In Fig. 3(a)-(c), the mean log RMS error is shown for a
Gammatone �lterbank with 25 �lters, while in Fig. 3(d)-(f)
the error is shown for 100 �lters. Given that for both cases
the �lter overlap is �xed at 50%, the bandwidths in the �rst
case are four times larger than the later ones. As explained
in Section II-E, the differences between the MSE and MTE
estimates are expected to be more prominent for the �lterbank
with larger bandwidth �lters. Indeed for narrow-band �lters,
as those employed in a 100-�lter �lterbank, the deviation
differences become non-trivial only for the �rst and last few
�lter indices [see Fig. 3(d)-(f)]. For �lters positioned inlow
frequencies, the difference is due to transient phenomena that
are not fully averaged out. For wider �lter passbands the
differences between the MSE and MTE deviations become
signi�cant, depending on the spectral shape of the signal and
on the noise type.

Overall, the MTE estimates are signi�cantly more robust,
i.e., yield smaller deviation values than the MSE ones, when
the major spectral energy content of noise is concentrated in
lower frequencies compared to that of the speech signal, e.g.,
in the case of volvo noise [see Fig. 3(b)]. Mixed results are
obtained for other noise types (babble and white noise) as
shown for the case of phoneme /aa/. In addition, transient phe-
nomena play a key role, especially for the lower frequencies
(or smaller �lter indices) [21]. The MTE estimation scheme
outperforms the MSE one for smaller �lter indices, due to
these transient phenomena. The difference in performance is
more pronounced for wider �lters and fricative sounds. In
the cases detailed above, the MTE-based estimated deviations
(from the clean energy coef�cients) are presented signi�cantly
smaller than the respective MSE ones.

C. Cepstral Coef�cient Deviations

Next, we compare the performance of MSE- and MTE-
derived cepstral coef�cients. These coef�cients are estimated
as discussed in Section III. One possible way to explore
the features' robustness is to estimate the normalized mean
cepstral feature deviation from the clean case (in dBs) as
follows14:

DevC[i ] , 20 log10

 
d� C[i ]
bCr [i ]

!

(25)

where d� C[i ], provided by (19), are the RMS differences
between the noisy and the clean cepstral coef�cients8i 2
f 1; � � � ; I g, normalized by the RMS valuesbCr [i ] of the clean
ones. These deviations are indicative of how noise of different
spectral characteristics affects the cepstral coef�cients. Similar
error analysis is, also, applied to the MFCCs (using a triangular
�lterbank) and is used as a baseline. The experimental setup
remains the same as in the previous experiment, i.e., MSE-
and MTE-based cepstral coef�cients are computed for 1000
TIMIT instances of the phoneme /aa/ corrupted by additive
noise, when �ltered by mel-spaced Gammatone �lterbanks

14The normalization scheme ensures that the coef�cient magnitude range
cannot affect the overall experimental results (lack of �lter magnitude nor-
malization can cause this mismatch across different �lterbanks). Eq. 25 is
inspired by [10], [11].
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Fig. 3. Multiband SNR energy estimation differences for MSEand MTE schemes averaged over 1000 instances for the phonemes: /aa/ and /sh/, extracted
from the TIMIT database, corrupted by babble (a),(d), car (b),(e) and white (c),(f) noises atSNR = 5 dB (on average). The �lterbanks consist of (a)-(c) 25
and (d)-(f) 100 mel-spaced, Gammatone �lters with �xed overlap of 50%. Positive values mean that the MSE scheme is more robust than the MTE one.
Negative values indicate better performance of the MTE scheme.

with either 25 or 100 �lters and �xed bandwidth overlap of
50%.

Mean Normalized Cepstral Deviations (in dBs)

Cepstral Noise Types Num. of
Features Babble Car White Aver. Filts.

MFCC -0.01 1.16 4.42 1.86
MSE- -5.80 -13.52 -1.62 -6.98 25 Filt.
MTE- -7.08 -28.62 -2.58 -12.76

Phone MFCC 0.84 2.66 6.31 3.27
/aa/ MSE- -2.47 -2.30 -0.38 -1.72 100 Filt.

MTE- -4.74 -10.93 -2.28 -5.98

MFCC 9.01 7.56 4.72 7.10
MSE- 4.55 8.70 1.51 4.92 25 Filt.
MTE- 5.69 3.88 2.36 3.98

Phone MFCC 8.01 6.76 3.61 6.13
/sh/ MSE- 3.11 9.01 -0.22 3.97 100 Filt.

MTE- 0.75 4.75 -2.71 0.93

TABLE I
MEAN NORMALIZED DEVIATIONS (IN DB) FOR 3 FEATURE SETS: MFCC,

MTE- AND MSE-BASED CEPSTRALCOEFFICIENTS FOR3 NOISE
SCENARIOS: BABBLE , CAR AND WHITE NOISE. CEPSTRALDEVIATIONS
ARE ESTIMATED USING 25- AND 100-FILTER FILTERBANKS FOR 1000

INSTANCES OF THEPHONEMES=aa= AND =sh=. SMALLER VALUES
INDICATE ENHANCED ROBUSTNESS TONOISE.

In Fig. 4, the normalized RMS cepstral deviations (in

dBs) are presented as a function of the cepstral coef�cient
index for babble [Fig. 4(a),(d)], car [Fig. 4(b),(e)], and white
noises [Fig. 4(c),(f)]. The deviations of the MTE- and MSE-
based features are, on average, smaller, outperforming the
MFCC baseline. Further, MSE-based and MFCC features
present very similar performance for some of the noise types.
The differences are more pronounced when wider �lters are
employed (25-�lters), as shown in Table I. As expected,
the MTE-based features present smaller deviations than the
MSE-based features for volvo noise, as shown in Fig. 4(e)
and, especially, in Fig. 4(b). For babble and white noise all
three front-ends perform similarly. This is consistent with the
mel-energy coef�cient deviations presented in the previous
section. Similar results are also reached in the case of the
MTE/MSE cepstral coef�cient scheme for other phonemes.
Concluding, we observe that the MTE-based features out-
perform, on average, all other studied features, i.e., MFCCs
and MSE-based cepstral coef�cients, for most phonemes and
types of noise, see Table I. These differences are especially
pronounced for lowpass noises, e.g., car (volvo) noise. Finally,
the proposed features present signi�cantly smaller deviations
w.r.t. the clean feature version, compared to the MFCC-based
deviation values, according to Table I, providing additional
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Fig. 4. Normalized RMS cepstral deviations (in dBs) computed over 1000 instances of the phoneme /aa/ extracted from the TIMIT database. Results shown
as a function of coef�cient index for babble (in (a),(d)), car (in (b),(e)) and white (in (c),(f)) noise at an averageSNR = 5 dB. The �lterbank consists of
(a)-(c) 25 and (d)-(f) 100 mel-spaced, Gammatone �lters with �xed overlap of 50%. Smaller values indicate enhanced robustness in noise.

robustness to the feature extraction process.

D. Speech Recognition Experiments

Next, speech recognition performance is evaluated when
the following parameters vary: �lter shape, energy scheme,
number and bandwidth of the �lters. Word and phone error
rates are estimated for various types and levels of noise, i.e.,
the Aurora-3 (Spanish Task), Aurora-4, and the TIMIT+Noise
databases, respectively. The results are presented as a function
of the �rst �lter ERB value and the total number of �lters
(the �lter bandwidth overlap percent is a dependent parameter
taking values between30% � 85%). For example, for the
leftmost Fig. 6(a), the1st �lter ERB takes values between
22� 44 Hz that correspond to ERB overlap (with the adjacent
�lters) percent of 30%� 85%. The ERB overlap percent is
�xed across all �lters of the �lterbank. In the case of the
100-�lter �lterbanks in Figs. 5, 6(c), the �lter ERB values are
set proportional to those of the 25- and 50-�lter �lterbanks
(when examining their1st �lters and the ERB overlap percent
ranges in30� 85%). Results (word accuracy) for the Aurora-3
database are shown in Fig. 5 for Gammatone �lterbanks and
for MSE/MTE estimation15. Further, results (phone accuracy)

15The results for the word-level LV-ASR task (Aurora-4) appear to be
similar to those of the Aurora-3 task and are omitted due to lack of space.

for the TIMIT+Noise database are shown in Fig. 6 for Gabor
and Gammatone �lterbanks, and MSE/MTE estimation. Fi-
nally, the PLP [16] and MFCC [20] features (extracted using
the HTK platform [35]) provide the baseline performance. All
features are normalized after removing their long-term cepstral
means (CMS). Plots in Fig. 5 have different y-axis ranges to
further enhance their readability.

According to the experimental results, moderate �lter band-
widths, i.e., the middle-part of the graphs in Fig. 5 and the
middle column in Fig. 6 seem to be more robust to different
training/testing mismatches and yield the higher recognition
rates across all noise scenarios. For the case of low and
medium mismatch between training and testing conditions,
i.e., the WM and MM scenarios, the MTE- and MSE-based
features appear to always outperform the baseline MFCC
features, providing enhanced immunity to noise. Both features
perform similarly for reasonable values of the �lter band-
widths. However, for the high mismatch task (HM), the perfor-
mance of the MSE and MTE front-ends diverge signi�cantly,
especially when wider �lters are employed (the right-most part
of the plots or when 25-�lter �lterbanks are employed, Table
II). The MSE-based features present an additional12%relative
improvement (for moderate �lter bandwidths) compared to the
MTE-based features and30% improvement when compared
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Fig. 5. Word accuracy for the cepstral MTE and MSE-based features (using
CMS) for 100 Gammatone �lters, in the Aurora-3 Spanish database. The
horizontal axis displays theERB Valuesof the 1st �lter. These values are
equalized (sequentially) to the1st �lter ERB values of the 25- and 50-�lter
�lterbanks (when the �lter overlap percent ranges in30 � 85%). Results for
three training/testing mismatched scenarios are shown: (a) High Mismatch
(HM), (b) Medium Mismatch (MM), (c) Well Matched (WM). The baseline
MFCC and PLP results are shown as dashed lines.

to the baseline results (obtained by the ETSI WI007 front-
end) Table II. These improvements are reached when the �lter
bandwidths assume reasonable values, i.e., the bandwidth of
the �rst �lter is less than 130 Hz. As detailed above, increased
�lter bandwidths lead to differences between the two energy
estimation schemes. In the case where the �lter bandwidths (as
in the right-most part of the plots) take very large values16,
the MSE-based features outperform the MTE-based ones due

16The 1st �lter bandwidth in the �lterbank takes values greater than 140
Hz.

to the presence of the high-frequency noise components in the
low SNR conditions, as shown in Fig. 2. On the other hand,
ASR performance for both features (MTE- and MSE-based
features) is similar, on average, for the case of narrow �lters
(the case of 100-�lter �lterbanks, Table II).

Word Accuracy (%) of Aurora-3, Spanish Task

Scenario WM MM HM Aver. Rel.
Features Impr.

Aurora Frontend (WI007) 92.94 80.31 51.55 74.93 -37.75
MFCCy 93.68 89.46 62.50 81.80 -
PLPy 94.97 89.10 53.68 79.25 -14.01

MSE-Basedy (25 Filt.) 94.20 89.52 78.05 87.26 30.00
MSE-Basedy (100 Filt.) 94.65 90.95 70.29 85.30 19.23

MTE-Basedy (25 Filt.) 94.22 89.21 71.94 85.12 18.24
MTE-Basedy (100 Filt.) 94.75 90.89 71.76 85.80 20.33
y Features are Normalized using Cepstral Mean Subtraction (CMS)

TABLE II
WORD ACCURACY (%) ON THE AURORA-3 (SPANISH TASK) DATABASE

USING HTK. THE FILTERBANKS CONSIST OF25- OR 100-FILTER
GAMMATONE FILTERS. RESULTS FORFOUR FEATURE SETS ARE
PRESENTED: MFCC (BASELINE), PLP, MTE-AND MSE-BASED

CEPSTRALCOEFS. IMPROVEMENTRELATIVE TO MFCC (WITH CMS)
BASELINE.

Next, in Fig. 6, the performance of MSE/MTE is investi-
gated as a function of both the number of employed �lters and
their shapes in the TIMIT+Noise task. The �lter shape does
not signi�cantly affect the ASR performance, provided that
the corresponding ERB bandwidths are normalized, comparing
the plots in Figs. 6(a)-(b). It, also, appears that the number
of �lters employed is not an important factor, as well; similar
results are obtained for different �lterbanks employing 25-100
�lters, when the corresponding �lter bandwidths are equal-
ized17, Fig. 6(b)-(c). Examining the relative performance of the
MSE- and MTE-based features, the MTE clearly outperforms
the other features for the case of volvo (car) noise, especially
when �lters present large ERB bandwidths. For other noise
types, the MSE- and MTE-based features display similar
performance, Table III. The differences in performance are
more pronounced in the case of wide �lters, e.g., when using
a 25-�lter �lterbank.

Overall, if we �x the energy estimation scheme, the pa-
rameter that mainly affects ASR performance is the �lter
bandwidth, rather than the bandwidth overlap percentage18 or
the shape of the �lters (as long as their ERBs are normalized).
There is also a relatively wide range of �lter ERBs (from
approx. 50 Hz to 120 Hz) where good ASR performance is
achieved. Thus, the word error rates seem to mostly depend
on the ERB values, exhibiting a stable performance for a
wide range of ERB values. Similar results were obtained
when additive noise was added to the noise-corrupted TIMIT
database.

17The overlap percentage has been altered accordingly to ensure wider
�lters in the case of the 100-�lter �lterbank. The1st �lter ERB values are
equalized (sequentially) to the1st �lter ERB values of the 25- and 50-�lter
�lterbanks (when the �lter overlap percent ranges in30 � 85%), and the rest
of the ERB values are increased proportionally.

18Note that the range of overlap remains the same for the 25, 50,100 �lter
experiments, ranging from35 � 85%, Fig. 6.
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Phone Accuracy (%) of TIMIT+Noise Task

Scenario Babble White Car Aver. Rel.
Features Impr.

MFCC 36.14 24.48 54.73 38.45 -
PLP 38.36 30.23 49.39 39.33 2.29

MSE-Based (25 Filt.) 39.95 33.22 46.86 40.01 4.06
MSE-Based (100 Filt.) 42.53 33.69 55.88 44.03 14.51
MTE-Based (25 Filt.) 40.83 33.52 51.84 42.06 9.38
MTE-Based (100 Filt.) 42.33 32.57 56.76 43.89 14.15

All Features are Normalized using Cepstral Mean Subtraction (CMS)

TABLE III
PHONE ACCURACIES(%) ON THE TIMIT+N OISE(ADDITIVE BABBLE ,

WHITE OR CAR NOISES) DATABASE. THE FILTERBANKS CONSIST OF25-
OR 100-FILTER GAMMATONE FILTERS. IMPROVEMENT ISSHOWN

RELATIVE TO THE MFCC (WITH CMS) BASELINE.

VI. CONCLUSIONS- DISCUSSION

We have investigated four key parameters in the feature
extraction process, namely: �lter bandwidth, �lter bandwidth
overlap, number of �lters and the energy computation scheme.
We have also examined their impact on ASR performance
for three different recognition experiments. The presented
results are supported by a theoretical analysis of the cepstral
coef�cients estimation error in noise. Overall, the equivalent
rectangular �lter bandwidths and the energy estimation scheme
appear to be two of the most signi�cant parameters determin-
ing ASR performance. According to the presented �ndings,
ASR performance can be predicted for a particular choice of
�lter bandwidth range and energy estimation scheme when
the relative spectral energy distributions of signal and noise
are considered.

In more detail, the performance of the averaged energy
estimation scheme is mainly a function of the relative spectral
energy content of the noise vs. the speech input signal, when
examined within the �lter passbands. The proposed gener-
alized cepstral features are directly related to these energy
distributions. Therefore, it is of great importance to ensure
a robust and ef�cient energy computation process. Energy
estimation errors propagate to the cepstral coef�cients, as well.
The proposed noisy cepstral coef�cient deviations (deviations
from the clean case) are, on average (RMS values), smaller
than those of the MFCCs. This is due to the energy scheme
and the wider �lters employed.

In this context, it is shown that features using �lters of
different spectral shape present similar performance when
their effective �lter bandwidths are kept equal, regardless
of their design parameters, for low and medium mismatch
training/testing scenarios. For high mismatch, the energy
computation scheme is usually the most important factor
affecting performance; the signal vs. noise spectral content
should be �rst analyzed, selecting the most appropriate energy
computation scheme.

Finally, similar trends and conclusions can be drawn when
advanced signal denoising and feature equalization techniques
are applied in combination with the feature extraction scheme,
as shown in [36]. There, the performance improvements appear
to be additive on top of the signal and feature enhancement
techniques, such as Wiener �ltering and Parameter Equaliza-

tion (PEQ). This is particularly important in building robust
ASR systems.

In future work, we plan to extend our work to the design
of �lterbanks that optimize ASR performance under adverse
recording conditions and under time-varying noise.
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(c)
Fig. 6. Phone accuracy for cepstral features based on MTE/MSE schemes tested on the TIMIT+Noise database (with CMS). Three different scenarios are
investigated: (a) Gabor Mel-Filterbank and (b) Gammatone Mel-Filterbank (for both cases the number of �lters is 100, 50or 25 for each of the three columns,
respectively). The horizontal axis displays theERB Valueof the 1st �lter, for ERB overlap ranging in30 � 85%. (c) Mel-spaced, 100-Filter Gammatone
Filterbank and ERB values proportional to those of the 25- and 50-�lter �lterbanks (when the ERB percent ranges in30 � 85%). Results are shown for three
noise types: babble, white and volvo (car).


