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Abstract—In this paper, we examine how energy computation robust automatic speech recognition (ASR), many questions
and Iterbank_ design contribu_te to _the overall front-end ro bL.JSt- such as how the energy estimation process and the lterbank
ness, especially when the investigated features are appmlig€o design affect ASR performance under noise, especiallydor v

noisy speech signals, in mismatched training-testing coittbns. . " . . h
In prior work [1], a novel feature set called ‘Teager Energy 1OUS levels of additive/convolutional noise and acoustaded

Cepstrum Coef cients' (TECC) has been proposed, employing Mismatch, remain open. The effect of noise on the features
a dense, smooth lterbank and alternative energy computabn employed in a speech recognition front-end is non-trivied a
schemes. TECCs were shown to be more robust to noise andcan greatly in uence the overall system performance. Is thi
exhibit improved performance compared to the widely-used ,ntaxt much work has been done minimizing this mismatch

MFCCs. In this work, we attempt to interpret these results usng o1 131 b ing t f fi fth isy feat t
a combined theoretical and experimental analysis framewdk. [2], [3] by using transformations of the noisy features to a

Speci cally, we investigate in detail the connection betwen the cleaner' feature domain, and thus improving their invaitity
Iterbank design, i.e., the Iter shape and bandwidth, the energy to certain noise types. Other related work includes speech
estimation scheme and the ASR performance under a variety of enhancement [4], normalization of the noisy featuressttedil
additive and/or convolutional noise conditions. For this prpose: properties [5]-[7] and dynamic feature combinations [8]. |

(i) the performance of Iterbanks using triangular, Gabor and [9]-[11], the effect of environmental noise on the statati
Gammatone lters with various bandwidths and lIter positio ns ' . . )

are examined under different noisy speech recognition task and SPeech models was investigated and two algorithms (CDCN
(i) the squared amplitude and Teager-Kaiser energy operairs and MFCDCN) were proposed for compensating it. However,
are compared as two alternative approaches of computing the the feature robustness problem remains unsolved in a dyobal
signal energy. Our end-goal is to understand how to select ¢h optimal way. Our goal, in this paper, is to analyze both
most ef cient Iterbank and energy computation scheme that . L ’ .

are maximally robust under both clean and noisy recording theoretically and experlmentally, how the lterbank desiga-
conditions. Theoretical and experimental results show tha (i) rameters and energy computation scheme affect the rolssstne
the lter bandwidth is one of the most important factors affecting  of speech recognition systems in noisy recording condition
speech recognition performance in noise, while the shape of The use of Iterbanks in ASR front-ends was motivated by
the lter is of secondary importance, and (ii) the Teager-Kaser  tha human hearing process [12]-[14], where the energy acros
operator outperforms (on the average and for most noise typ® f . f1h di ¢ . ived b . it

the squared amplitude energy computation scheme for speech requencies ot the audio spec Wm ISTeso vg y using arydi
recognition in noisy conditions, especially, for large lter band-  Iters. Although the human hearing process is for the most pa
widths. Experimental results show that selecting the apprpriate  heavily researched, machines have been unable to match the
lterbank and energy computation scheme can lead to signi@nt  robustness that human beings exhibit in speech recognition
error rate reduction over both MFCC and Perceptual Linear in noise [15]. Efforts to model the human audio processing

Predicion (PLP) features for a variety of speech recognitio tasks. - o
A relative error rate reduction of up to  30% for MFCCs and to further improve the robustness of speech recognitiont{fro

39% for PLPs is shown for the Aurora-3 Spanish Task. end have had limited success, e.g., perceptual linear gredi
. . tion features (PLP) [16], relative spectral transform fiees
Index Terms—Robustness, speech recognition, parameter esti- . .
mation, speech processing, spectral analysis, cepstrum agsis, (RASTA) [17], dynamic spectral subband centroids [18] or

error analysis, time-frequency analysis, bandpass Iters the auditory-based features [19]. However, for the past two
decades, the Mel Frequency Cepstrum Coef cients (MFCC)
I. INTRODUCTION [20] have remained the most widely-used features for ASR

Robust feature extraction is a complex problem much stu@PPlications mainly because they combine good discririnat
ied over the years. Despite recent progress in the domaincgPabilities with low computational complexity. Thesetteas
incorporate some aspects of the human hearing process, such
Copyright (c) 2010 IEEE. Personal use of this material ismiged. g the nonlinear Iter placing (me|_sca|e) and subband gyer

However, permission to use this material for any other psegomust be timati d £ i |ativel | d I
obtained from the IEEE by sending a request to pubs-perons@ieee.org. estimation, and perform well in relatively clean and well-

During the preparation of the paper, D. Dimitriadis and Pragas were matched conditions. On the other hand, MFCCs lack robust-
with the School of Electrical & Computer Engineering, Na& Technical ness in adverse recording or noise mismatch conditions.

University of Athens, Greece, Zografou, Athens, GR-157@8ece; email: .
mg;’:grz';é%s_mu?; reece, ograto, Ahens Sece; emal Recently, theTeager Energy Cepstrum Coef cients (TECC)

A. Potamianos is with the Dept. of Electronics & Computer Eng have been proposed and shown to outperform the MFCCs,
neering, Technical Univ. of Crete, Chania, GR-73100, Geeeemail: ggpecially in noisy recognition tasks and under mismatched

potam@telecom.tuc.gr. L . ..
D. Dimitriadis is, now, with the AT&T Research Labs Inc, Fiam Park, training/testing conditions [1]. The TECCs employed aeralt

NJ 07932, USA; email: ddim@research.att.com. native energy estimation scheme, i.e., use of the TeagseKa



instead of the square amplitude energy operator [21], atie underlying assumption is that the information-camyin
human hearing-inspired lterbanks, i.e., Gammatone dtersignalsa; (t); ! j(t) are slow varying compared to the carrier
placed on the Equivalent Rectangular Bandwidth (ERB) curveequencies. Next, we summarize the main theoretical tesul
The ERB is a measure used in psychoacoustics, approximatfiram [21].

the bandwidths of the Iters in human hearing by rectangular

band-pass lters. It was rst introduced for speech prot®$s A  Harmonic Noise Modeling

licati in [22] and [23].
ap‘ll?r:ce:an:;rilrsl Ignogls]o?r:his[ pz!tper are to: (i) adequately presenl’o‘n approximation of a bandpass noise sigrp(t) was
rst proposed in [26], [27] and used in [21]. The noise

the TECC “family' of features, i.e., the TECCs and other fron . i deled ¢ otati . it
ends employing similar design parameters, (ii) inveséiga ignal is modeled as a sum of stationary sinusoigis(t)

under what noise conditions this new family of features eutp E =1 ;dKi ), Véith xed gmplitude;llqk : ph_?se (I)ffsdgtsj;?u
forms the MFCCs, (iii) provide theoretical and experiménté at are independent ran om variables uniformly |ste_ ut
er[ ; ]and frequencie$k placed equidistantly with

results on the optimality of the energy computation scher¥®'| '
(squared amplitude vs. Teager-Kaiser energy operatod, apacing: r,

(iv) investigate the optimal design of the lterbank (numbe Xi Xi
of lters, lter bandwidth and shape) for noisy speech reeog v; (t) ik (t) = bk cos@ijx t+ k) 2
nition tasks. Speci cally, we compare tmean Teager-Kaiser k=1 k=1

(MTE) or mean square amplitud_e (MSEpergy sc_hemes forThe number of sinusoid componeris is given byK; |

cgpstrum-based feature.e_zxtractlon, when applled to spe%g}:! r€ where B; is the j™-Iter passband. Thus, we

signals corrupted by additive and/or convolutional nofer- approximate noise with more componekts when the Iter

ther, we analyze th_e performance of the energy CompUtat'Bstband is broader.

schemes as a function of the Iterbank design parametegs, e.

bandwidth in conjunction with the noise spectral charaster ] ] o

tics. Overall, different key parameters of the featureantion B- NOISy Teager-Kaiser Energy Estimation

process are investigated and ASR experiments are undertakef we apply theTeager-Kaiser energy (TEQ)perator [24]

to examine their impact on the corresponding recognitidn the bandpassed noisy sigsga(t) , rj(t)+ v; (t), its long-

results. This work builds upon theoretical results in [21]. term mean Teager-Kaiser energ¥TE) [21] is a sum of two
The paper is organized in sections as follows: In Secti@m@mponents «

Il, the clean speech and the harmonic noise models are

introduced. Herein, the input signals are bandpass Itered < [s®1> <a12(t)! J'Z(t) >+ kfk ! J'Zk ®)

and the respective lter bandwidths are examined, as well. k

A uni ed energy estimation scheme is presented, where tMéere< > denotes the time-averaging process.

Teager-Kaiser energy operatdTEO) and thesquare ampli- ~ The normalized deviatiorD+ provides a measure of the

tude energy operatofSEO) are only two cases of the generdpbustness of energy estimation in additive noise and iselé

scheme, Section II-C. It is shown that the energy estimati@§ the ratio of the difference between the mean noisy and clea

performance is much dependent on the Iter bandwidth. TH€rgy estimates over the mean clean estimates,

proposed feature extraction process is presented in &ddtio Pk, 2

In Section 1V, it is investigated how additive and convabuial Drlsjirj] ——sr dk S ()

noise types affect the proposed features. The performaince o <aj(t)! (1) >

these features in speech processing applications is giegsen The normalized deviatio® is proportional to the squared

Section V; both energy estimation and speech recognitiongfoduct of ! ik Wwith the amplitude coef cientshx, and

noise are investigated. Finally, the conclusions and dision inversely proportional to the mean instantaneous frequenc

of future work are provided in Section VI. I 2(t) weighted bya?(t). Therefore, theDr estimates de-
pend on therelative spectral energy distribution (within the
Il. BACKGROUND frequency band of interest) of the noise and speech sigasls,

In most speech processing applications, speech siggls detailed in [21].
are ltered by lterbanks yieldingr; (t) = g (t) x(t), where
g (t) is the impulse response of th# analysis Iter and ™' C. Noisy Squared Amplitude Energy Estimation
stands for convolution. The AM-FM speech model suggeststhe mean s

- ; k quared amplitude energWISE) for s; (t) is
the decomposition of the speech signal into(resonance

S . given by

inspired) signals; (t), whereJ the number of deployed lters X I

in the analysis Iterbank [24], [25], < sz(t) S 1 <al(t) > + kfk (5)
d J z 2 i
X X t K

()= ; I _
x() - () i 3 (t)cos 0 Od+ g @) Similarly, thenormalized deviatioDs for the MSE case is

h h P«

where g (t), ! j (t) are the instantaneous amplitude and fre- Ds[si:ri] k=1 Bk 6)

guency modulating signals angl is a phase offset. Herein, s < ajz(t) >



The Ds estimates are approximately equal to the inversad the normalized deviatidd+, (4), is given by

signal-to-noise ratio (SNR) values in the Iter passband. B2

Henceforth, the signal arguments, i.e., the sigsals); r; (t), Dr[sj;rjl= PPV OES (8)

will be ignored inDt andDg for notational simplicity. i

The MTE normalized deviation (4) can be formulated as the Correspondingly, for the MSE case,

ratio of the 2"¥-order spectral centroid of the noise over the

clean signal [25], while, the MSE deviation (6) is the ratio o sj2 = —a]?(t) [1+cos(2! t+2 ()]

the 0" -order spectral centroids [18]. We can express both of 2 1

these deviations with a ComIJJact notation + §b2 [L+cos(2 gt+2 )]

p
DM = R k qzk ! j.2 @) + bg (t) [cos( v)tcos@lgt+ + )]
Bj PRIX(1)jza and, the MSE deviation, (6), is

Forp=0: DO Dg, whereas fop=2: D@ Dr. 2

Dslsj;rj] = 9)

Based on the equations above, the spectral energy distribu-
tion (p" -order spectral moments) within the frequency band o
of interest determines the relative performance of the M&E aF"0m (8) and (9), it is concluded that both long-tefm and
MTE! estimates. In general, the MTE values present smalfgs @€ equal when narrow bandpass lters are used. Conse-
estimation errors (deviations) when compared to the MSE/€ntly, no signi cant difference is expected when emphayi

ones when the high-energy noise components are concehtr&ifferent energy operators on narrowband signals (thisiés t
over low frequencies (within the passband), and vice-veisa €8S€ of approximately monochromatic signals). Howevaer, th

due to the weighting termP that affects the overall spectraIMSE estimates include time-decaying transient phenomena,
energy distribution of the input signal [21]. The MTE andS OPPosed to the MTE scheme where these phenomena are

MSE estimates are obviously related, due to this ferm not present (in the case of shorter averaging windows). In
general, the MTE estimates are expected to present smaller

deviations than the MSE ones, as outlined in Section I1I-D.

D. Medium and Short-Time Properties of Energy Operator . . . -
) P _gy b Srhe experimental veri cation of this analysis is presenied
The analysis above assumes that the duration of the av€kction V.

aging window is long enough to ignore all transient terms.
However, the estimation errors of the MTE and MSE scheme§ G cneERALIZED CEPSTRUMCOEFFICIENT FRONT-ENDS

depend on the window length, as well. In the case WhenN : . | f h d
medium- and short-time windows (less than 15 ms) are ext, we Investigate cepstral features that are compute

considered, transient terms contribute to the estimatioor e ysing different lterbanks and energy computation schemes

and should be taken into further account in the analysis. g th? mel Teager-energy cepstral coefcients and their
this context, the MTE deviation values are expected smal@gneralizations.

than those of the MSE ones. Finally, all the transient terms

are inversely proportional to the frequency content, eltgr, A. ERB and Maximally Smooth Filterbanks

center frequency! .. Therefore, these deviation terms are The Equivalent Rectangular BandwidttERB) has been
further emphasized for smaller frequency values. A moigtroduced to measure the bandwidth of asymmetrical IR

2
<aj(t) >

detailed description can be found in [21]. lters, such as the Gammatone lters. Given thé{(! .)j is the
maximum gain of a bandpass Iter with frequency response
E. Narrowband Signal Analysis G(! ), reached at frequendy., then the Iter ERBis de ned
For narrowband signals the signgl(t) is approximated as RjG(' )j2d!
by a two-cosine sum, i.e., the noise has a single frequency ERB = ﬁ (20)
component JG(t o)
In other words, the ERB is the bandwidth of a rectangular
si(t) = pi (t) COS{(!7 Glt+ f?+ Fcos(!&-t + Vg shaped lter when its energy (the integral of its frequency
rj (t):Clean Signal vj (t):Noise Signal response magnitude squared) is normalized by the maximum

gain squaredG(! ¢)j°. By normalizing the Iter ERBs, their
design parameters have to be modi ed accordingly.
[s)] 'Zaf(t)+ 1507 +2b 5 (t)cos(r ) A Gabor lter impulse response is given by

where! ¢ is thej th Jter center frequency. Then,

Assuming thaty (t) Oande; (t) 0, the noisy signal MTE Oean (t) = € b*t? cos( .t) (12)
timate (3) is gi b
estimate (3) is given by wherebis a parameter controlling the Iter bandwidth ahd
<[sP=15 <al(t)> +1° is its center frequency. According to [28], the correspagdi
ERB value isBgap = b= 2 .

1The relative performance of MSE vs. MTE scheme doesn't solely depend Further. the impulse response of a Gammatone lter is given
on the signal-to-noise ratio in the frequency band. !
2Higher-order derivatives of the input signal correspondatger values of by

p, [21]. Qeamm (t) = t3e 2 M0t cogq  t) (12)



whereb is a bandwidth controlling parameter ahq is its the proposed algorithm from the typical MFCC algorithm. The

center frequency. Its ERB value is given Byamm = b[23].  following two steps, i.e., the cepstral coef cient estiinat
When the Iters have equal bandwidth parametars- and the truncation process, remain the same as in [20]. The

. P DA ASR results presented in [1] and in Section V below, show

Beap =1= 2 Boamm OFBeap * 0:4 Beamm  (13) signi cant improvement, especially for recognition tasks

meaning that for the same design paramété@abor Iters noise. The additional robustness to noise can be attributed

are narrower than the corresponding Gammatone ones. B9 the use of wider lters and the use of alternative energy

considering (13), the Gabor Iter bandwidths should har- estimation schemes, i.e., the MTE scheme.

malizedby a factor of approximately (times) 2.5 to achieve

the same equivalent ltering passband as with the Gammatong ERRORANALYSIS FOR CEPSTRUMFEATURES INNOISE

fter passband_s. Henceforth, equal ERB velues are assumqunt" now, the bandpass lters were considered ideal where
when comparing ASR results corresponding to Gabor alﬂ‘fjeiramplitude response was rectangular with xed ampktu
Gammatone lterbanks. equal to unity. Herein, the aforementioned analysis is gene
alized for a wider “family' of bandpass lIters.
B. Generalized Cepstrum Coef cients Under the conditions detailed in [30], [31] for speech and
MFCCs are typically computed using a Iterbank22 25 [32] forimage signals, a Iltered bandpass AM-FM signg(t)
triangular Iters with 50%bandwidth overlaf) the (log) mean can be approximated by

mel energy coef cients are estimated and then transformed Z,
to the Cepstrum domain via the Discrete Cosine Transform(t) & (t)jG;[!;(t)ljcod ! ()d +\G[!j(®)]+ ;9
(DCT). The feature sets analyzed in this paper, as proposed 0 (14)

in [1], employ smoother and broader lters. The use QjhereG;[] is the frequency response of th& Iter. The
such lters, i.e., Gammatone or Gabor lters, for estimafin 5,hroximation is exact when; (t) is monochromatic, i.e.,
the cepstral coefcients, is supported by the broader Ite_rj(t) = constant. Further, in the case of real, symmetric
approach, as presented in [29]. In addi_tion te that, diﬁEr_e lters, e.g., Gabor lters,\ G;[!j(t)] = 0 and the ltering
energy estimation schemes have been investigated, pngvidhrocess affects only the instantaneous amplitude sig(tl

additional robustness to the proposed features (dependig). similarly to (14), the noise signal can be rewritten as
though, on the spectral ngerprint of the clean and noise

signals). _ i - ' '
The feature extraction algorithm consists of the following Vi (D= BiiGj[tjclicodt e t+ j + 1\ Gj[t g
steps, Fig. 1: k=0 (15)

1) Filter the speech signal using a mel-spaced Iterbanlq the case of ltering the speech signals, the instantaseou
The Iterbank consists of25 100 smooth lters and amplitude signals are given by

uses Gabor, Gammatone or Gammachirp Hers ] ] . ]
2) Estimate the MTE or MSE mel-energy coef cients of the a (DJG; [ (1)]j andby jG; [! j 1i

framed bandpassed signals. _ The phase offsets, i.e\,G;[! j(t)] and\ G;[! i ], are aver-
3) Transform these energy coef cients into the Cepstrullyeq o Only in the cases of short- and medium-term energy

domain. Only the rst low-order cepstral coef cients areyveraging, these phase offsets should be considered.
kept for recognition (the de facto standard is to keep the

rst 13 coef cients, including CO). ) )
4) Estimate their rst and second order time derivatives arft Cepstral Coef cient Error Analysis

perform Cepstral Mean Subtraction (CMS) As shown above, the noisy speech energy coef cients,
(3), (5), are the sum of the speech and the noise energy
coef cients (given suf cient length for the averaging wiog),

i le., Psim] = Pm]+ Pyfiim], wherej =1; ;J,
—— e TRy [ Log [ DCT [ m=1; ;M; J the number of lters andM the total num-

ceurs. ber of frames. For the case of MTE; im]l=< [rj(t)]>

and Py[m] =< [v ()] >7, fort 2 m"-time frame.
Henceforth, to simplify the notation we shall drop the frame
indexm from all equations. Note that this analysis holds true
for each one of the frames.

In [14], [19], it is conjectured that the Gammatone lters ., ; . .

- ; With a uni ed notation for both energy schemes, similarly
equidistantly placed in the mel-frequency scale, resertitde to (7), theCepstral Mel Energy Coef cient’], [26] are given
human ear. The rst two of the steps substantially diffeiztet ’ ’

Speech Estimation

Fig. 1. Block Diagram of the TECC Feature Extraction Process

by
3The triangular lters present nite passband support tiere, the overlap Cgp) =W |09(P (Sp)) (16)
is, usually, estimated over them.
4Herein, results only for the rst two types of lters are reped. 6Assuming that j (t) is smooth enough, thenG; [! j (t)]  constant.
5The experimental results using features without CMS ardainowever, "Herein, only the MTE case is presented. However, the sanatieqtholds

these results appear more noisy making conclusions leas cle true for the case of MSE, as well.



where c? = (cPr1 cP2; . CPI)T is the wherer;; v; andh; are the framedt(2 m" time frame)
vector of the estimated noisy cepstral coef cients withgdn bandpassed clean speech, additive and convolutional noise
I, W is anl J Discrete Cosine Transform matrix andsignals, respectively. Further,
PP = (PPnL PPRE PPPDT and PP = z S
PP PPRE s PPEDT are the noisy and clean Milvl= IPiGi(1)N(5im )j“d!
speech mel-energy coef cient vectors estimated over the YA Bi
lter passbands. Depending on the energy estimation schem#f;[r; h;]= FPIG) (1)X (5;m)j3jH (1; m )j2d!
the parametep = 0 or 2 (whenp = 0, we refer to the MSE Bj
values, and fop = 2 to the MTE coef cients). To further and, Z
simplify the notation, we shall, henceforth, drop the super Mi[rj]= 1 PG (1)X (1;m )j2d!
scriptp, as well. The analysis below holds true for eitper 0
orp=2.
Eqg. (16) is rewritten element-wise, as

Bj
where Gj (! ) is the j Iter frequency response and;
its passband, whereas(!;m );N(!;m ) andH(!;m ) are,

X _ respectively, the periodograms of the clean, additive and
Gslil= Wj log (Ps[j]) (17)  convolutional noise signal frames, apdie ned as above.
i=1 0 By substitution, we obtain
wherel i | andW; = 2=J cos[i (j 1=2)=J] R eig, (1N (:m )izl
Inspired by the analysis in [10], [11], we introduce the D; = i : —
Cepstral Coef cient Deviation C[i] as the difference of the 8 PPIG; (1 )X (f;m )jd
noisy and the clean speech cepstral coef cients, Celi] and g 'PGH (M )2 )G (1)X (5, m)j2d!
) i R
G i, * g, ! PIGj (1)X (5;m )j2d! (21)
X] .
Cli] = Gs[il] Cli]= W; log PS[!] (18) The normalized deviatioﬁsDj consist of two terms account-
j=1 Prlj] ing for the two different noise types, i.e., the additive dhe
From the analysis in Section I, (18) leads to convolutional noise parts.
X P.li] D; = D™ + D (22)
11 = .. v
C[i]= = Wi log 1+ P01 where
AR | 5, | PGH(m )2 DGy ()X (5 m )jd!
where the quantityP,[j]=P[j] is the normalized MTE or  Df*™ | ' R———— s
MSE mel energy deviatiorfg)), within thej ™ Iter passband. g, ' PIG; (1)X (5 m )j2d!
Therefore, and R ,
X PG (V)N (Y m )jed!
Clil= W log(1+ D) (19) padd | R

- 2, ! PG ()X (1;m )j2d!

whereD; , P,[i]=R[j] is the estimated energy deviation Asgum_ing thatjH (!; m )j remains almost constant for a

for the j lter index, assumingP;[j] 6 0;: 8. The _certam tl_me frame and across all frequency bands, then
C deviation values provide an indication of how noiséd (M )i 1 Hj and

(of different spectral characteristics) corrupts the MTegad Dj = Hj + Df‘dd

MSE-based cepstral coef cients. These deviations con$iat o ) )

linear combination of the log energy deviations weighted dynally; after substituting the noise model, we obtain

Wi , across all Iters. Therefore, the energy deviation values

corresponding to different frequency bins linearly affatthe

cepstral coef cients. Consequently, smaller energy esiiom

errors will yield smaller cepstral feature deviations frohe 1h€ assumption of convolutional noise with constant spéctr
clean one% characteristics for each time frame, adds a constant dewiat

termH; to the total normalized deviation. This constant error
term can be easily removed via an energy normalization post-
. _ . _processing scheme, e.g., mean value subtraction [6].

In the presence of both additive and convolutional noise the|, o general case of noisy signals contaminated by both

corrupted speech signal equals idt)  hy (t) + v (t). AS  qqitive and convolutional noise, the cepstral deviatio|[i]
de ned in the previous sections, the normalized mel-enerqyg) will, now, contain an additional term (22)

coef cient deviation is given by:

1 PRR2ic. (1 i2

g, ! PIG; (1)X (1;m )j2d!

B. Convolutional Noise Analysis

X
D, = Mjlvil+ Mjlr; hiT Mjlrj] (20) Clil=  Wjlog 1+ D™ + DA% (24)
Mj [I’j] j=1

8The energy-related errors can be attributed to both thenatitin process  9We assume thdd j is non-negative and in the rare occasions when it takes
and the existence of noise. negative values we suggest thresholding it.



Similar results are presented in [9], [10] for the case dfz, is present in the high-noise scenario, and an additional
the MFCCs. In this context, it should be highlighted thepike-like noise component around 3 kHz, can be noted for the
importance of the weighting termP that emphasizes certainquiet and low-noise scenarios. The rst highpass component
parts of the signal power spectrum (according to the valfiesaan be attributed to the wind noise from the open windows
p) and thus, can provide smaller cepstral coef cient dewiagi while driving in high speed and/or the car-radio playing mous

CJ[i] when set accordingly. One of the paper contributiorend the second one to the engine noise. This analysis is
is based on the introduction of this weight;, to the feature especially relevant for interpreting the results of theegbe
extraction process. recognition task; as explained in Section Il, the spectiapge

of the noise determines the relative performance ofMifd=-
V. ENERGY ESTIMATION AND SPEECHRECOGNITION vs. MSE-based cepstral features.
EXPERIMENTS

In this section, various parameters of the feature exbacti Mean PSD for Auore Sparish Database and Nolse Condions
process are investigated experimentally in terms of nois — Quiet
cepstral coef cient deviations from the clean case andrthe
respective speech recognition performance. Speci cdlig
following parameters are evaluated: (i) the Iter sha@abor
or Gammatonelterbanks, (ii) the number of Iters: ranging 60 f
from 25 to 100 Iterg®, (iii) the Iter bandwidth (while
keeping the number of lters xed) and (iv) the energy
schemeMTE or MSE approaches. In all cases, the lters are _
equidistantly placed following the mel frequency scaleeTh §
bandwidth overlap is estimated by considering the IterRE §
values. The same design parameters are used for both Ga®
and Gammatone lterbanks, i.e., same number of lters,rlite %
placing and normalized ERB bandwidths.

50

-100
A. Experimental Setup

For the experimental part of this paper three speec
databases are used, i.e., the Aurora-3 (Spanish task)radro

and the TIMIT+Noise speech databases. The fundamental d -0 ‘ ‘ ‘ ‘ ‘ ‘ ‘
0 500 1000 1500 2000 2500 3000 3500 4000

ference between these databases is that the rst database ¢ Frequency in Hz
tains real-life data, while the second and third databasas c
tain data corrupted by arti cially added noises. The Aur8ra Fig- 2. Mean Normalized PSD for the three different Aurora@ise

datab . ded inside th bi N . conditions: quiet, low, and high noise levels. The mean PSi@saveraged
atabase IS recoraed Insige the cabin of a moving car USifid, 5 noise frames of the same noise condition signals.

both a close-talking and a near- eld microphone. Thus, the
data contain both convolutional and additive noise. Furthe

. .. The Aurora-4 database has been created to investigate LV-
the Aurora-4 task is a Large-Vocabulary Speech Recognltlg\%R tasks in the presence of noise. The database is based
task (LV-ASR), contrary 1o the rest of the tasks that have 06}1 the WSJ database and the 5k-words task for training and
limited vocabulary and use all-pair grammars.

In more detail, the Aurora-3 database contains recordihgstgsung’ respectively [33]. For training, the 16 kHz sardple

. . . . noisy set is used. It contains a variety of noises added to the
two different microphones and three noise levels with zagyeraC ean speech and mixes data from several micronhones. The
SNR levels at 12, 9 and 5 dB, respectively. Three differep{ P ' P '

training-testing scenarios are examined, i.e., the welletmed est set was created by adding seven different noise tyges, i

(WM), the medium-mismatch (MM) and the high-mismatcC|ean’ street traf c, train station, car, babble, restatrand

(HM) conditions. In the WM scenario, all combinations Oflrport, to two-microphone recordings yielding 14 differe

microphones and SNR levels are included in both the traini gsting conditions [33]. The Language Model used is the

n ; ; :
and the testing sets. In the MM scenario, training and tg@ssin b%sgllne model prowded by the ETSI an gl_Jra'uon.

performed using only the hands-free microphone recordin SFmaIIy, the_th|rd.databaseT(MIT+N0|s.e) is created by

In the HM condition, the close-talking microphone recogiin rti cially addlngl different types of noise to _the TIMIT .
are used for training, while the hands-free recordings aeslu database. F_O'T this purpose, th_e NOISEX-92 n0|se_date_1base IS
for testing. Typically, car noise is assumed lowpass. Hamevusecj’ containing ten typical noise samples, each withreifie

the analysis of the mean normalized power spectrum denss ctral characteristics [34]. These noise signals arendow

- : : led to 16 kHz and added to the speech sent&nfresm
(PSD), shown in Fig. 2, does not fully support this assumrptloS mp i .
Speci cally, a highpass noise component betw#00 2500 the TIMIT database, while keeping the global average SNR

10In this set of experiments the bandwidth overlap percentagfeveen 11The noise signals have a duration of approximately 235 s,mrtion of
adjacent Iters remains xed. Consequently, changing thenber of lters the noise signal is randomly selected and added to eachtsgagwl. Their
also affects the lter bandwidth. sampling frequency is 19.98 kHz.



xed at SNR = 5 dB'2 The training is performed on the In Fig. 3(a)-(c), the mean log RMS error is shown for a
clean TIMIT data while the test sets consist of the nois€&ammatone Iterbank with 25 Iters, while in Fig. 3(d)-(f)
corrupted versions of the original TIMIT test set. Furthtee the error is shown for 100 lters. Given that for both cases
clean speech signals are used as reference for comparingthiee Iter overlap is xed at 50%, the bandwidths in the rst
normalized deviation and log distortion difference valués case are four times larger than the later ones. As explained
the estimated features. in Section II-E, the differences between the MSE and MTE

The HMM-based HTK Tools platform is used for allestimates are expected to be more prominent for the Iltekban
ASR experiments. The statistical model for the Aurora-& tasvith larger bandwidth Iters. Indeed for narrow-band Il®r
consists of 11 context-independent, left-right, word HMMas those employed in a 100- Iter lterbank, the deviation
that are trained using the ETSI WIOO07 training scripts. Fdlifferences become non-trivial only for the rst and lastvfe
the TIMIT+Noise tasks, the model consists of 46 phonemdter indices [see Fig. 3(d)-(f)]. For Iters positioned itow
based, 3-state, left-right HMMs with 16 Gaussians per stafeequencies, the difference is due to transient phenonteata t
The grammar used for both cases is the all-pair, unweightace not fully averaged out. For wider Iter passbands the
grammar. The MFCC, PLP, MSE- and MTE-based featudifferences between the MSE and MTE deviations become
vectors consist of 39 coef cients, i.e., 13 cepstral co&drits signi cant, depending on the spectral shape of the signdl an
(including CO) and their rst and second time-derivatives. on the noise type.

The principal motivation behind including experiments on Overall, the MTE estimates are signi cantly more robust,
both real and arti cial data is twofold: (i) using arti ciadlata i.e., yield smaller deviation values than the MSE ones, when
allows for the exact computation of the deviations (from thihe major spectral energy content of noise is concentrated i
clean ones) for the ASR features, and (ii) using real-lifeadalower frequencies compared to that of the speech signal, e.g
presents different unaccounted sources of noises thaad&gr in the case of volvo noise [see Fig. 3(b)]. Mixed results are
the ASR performance, i.e., Aurora-3 data. On the contrakyptained for other noise types (babble and white noise) as
the underlying phenomena in TIMIT+Noise task are clearkshown for the case of phoneme /aa/. In addition, transiest ph

presented and anticipated by the theoretical analysis. nomena play a key role, especially for the lower frequencies
(or smaller lter indices) [21]. The MTE estimation scheme
B. Speech Signal Energy Deviations outperforms the MSE one for smaller lter indices, due to

Typically, the estimation of the signal time-frequency ye these transient phenomena. The difference in performance i

distributions is the rst step in the feature extraction gees. More pronounced for wider lters and fricative sounds. In
We compare the MTE and MSE computation schemes acrdie cases detailed above, the MTE-based estimated desatio
all lters in the presence of additive noise. The normallfrom the clean energy coef cients) are presented sigmitia
ized MTE and MSE energy deviations de ned in (4) angmaller than the respective MSE ones.

(6) are actually the inverse subband SNRs, where the mel-

energy coef cient deviation from the glean estimz_ﬂes i§ the. Cepstral Coef cient Deviations

‘noise' and the clean-case estimate is the “desired signal'

Consequently, the SNR of the MSE scheme is de'ieas . ; . .
SNRs ,  10log(Bs), and similarly for the MTE case, derived cepstral coef cients. These coef cients are eatied

e, SR, 10logo(B1). Energy estimation resus arege SRS L PR 00 BN B e mean
presented in terms ofmean SNR differencen dBs), or

SNRs  SNRy . The differences assume negative values on epstral feature deviation from the clean case (in dBs) as
e Bllowsl4: !
when the averaged MTE-based deviations are smaller than dC[i]
the corresponding MSE ones. In that sense, the Teager+Kaise DevCl[i], 20log, ———
operator provides more robust energy estimates than those & i
based on MSE. dr _ )
1000 instances of the phonemes/ and/sh/ are extracted Where “ CIil, provided by (19), are the RMS differences
from the TIMIT+Noise database for each of thabble car between the noisy and the clean cepstral coef cieits2

and white noise types. Two different mel-spaced Gammatorls ! 9 normalized by the RMS valued[i] of the clean
lterbanks, using 25 or 100 lters (with constan8 dB- ones. These deviations are indicative of how noise of dffer

bandwidth overlap of50%) are used [1]. MTE and MSE spectral characteristics affects the cepstral coef deStmilar

coef cients are computed for each bandpassed signal usﬁréor analysis 'S also, applied to th_e MFCCs (usin_g a Ay
an analysis window of 30 ms, updated every 10 ms. Thléerbgnk) and is used as a baselme. The ex.perlme.ntal setup
log root-mean-square (RMS) differences between the trde dfMains the same as in the previous experiment, i.e., MSE-

estimated MTEs and MSEs are computed and averaged of8f MTE-based cepstral coef cients are computed for 1000
all frames and 1000 phonemic instances. TIMIT instances of the phoneme /aa/ corrupted by additive

noise, when ltered by mel-spaced Gammatone Iterbanks

12The SNR value is estimated as the mean ratio of the speechtiower
noise signal energies per frame. Then, the noise signalscaled so that  14The normalization scheme ensures that the coef cient ntadeirange
the global mean SNR is 5 dB. Therefore, this value refers ¢ovifde-band cannot affect the overall experimental results (lack ogrltmagnitude nor-
speech signal and suggests that the SNR level is, on thegayesadB. malization can cause this mismatch across different keks). Eq. 25 is
13The ‘b” stands for mean estimates averaged over 1000 phonemadasta inspired by [10], [11].

Next, we compare the performance of MSE- and MTE-

(25)
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Fig. 3. Multiband SNR energy estimation differences for M&t MTE schemes averaged over 1000 instances for the phenémaé and /sh/, extracted

from the TIMIT database, corrupted by babble (a),(d), c(éb and white (c),(f) noises @NR =5 dB (on average). The lterbanks consist of (a)-(c) 25
and (d)-(f) 100 mel-spaced, Gammatone lIters with xed degr of 50%. Positive values mean that the MSE scheme is mdmestdhan the MTE one.
Negative values indicate better performance of the MTE mehe

with either 25 or 100 Iters and xed bandwidth overlap ofdBs) are presented as a function of the cepstral coef cient

50%.
| Mean Normalized Cepstral Deviations (in dBs) |
Cepstral Noise Types Num. of
Features|| Babble [ Car | White | Aver. Filts.
MFCC -0.01 1.16 4.42 1.86
MSE- -5.80 -1352 | -1.62 | -6.98 | 25 Filt.
MTE- -7.08 -28.62 | -2.58 | -12.76
Phone || MFCC 0.84 2.66 6.31 3.27
faa/ MSE- -2.47 -2.30 -0.38 | -1.72 | 100 Filt.
MTE- -4.74 -10.93 -2.28 -5.98
MFCC 9.01 7.56 4.72 7.10
MSE- 4.55 8.70 1.51 4.92 25 Filt.
MTE- 5.69 3.88 2.36 3.98
Phone || MFCC 8.01 6.76 3.61 6.13
/sh/ MSE- 3.11 9.01 -0.22 3.97 | 100 Filt.
MTE- 0.75 4.75 -2.71 0.93
TABLE |

MEAN NORMALIZED DEVIATIONS (IN DB) FOR3 FEATURE SETS: MFCC,
MTE- AND MSE-BASED CEPSTRALCOEFFICIENTS FOR3 NOISE
SCENARIOS: BABBLE, CAR AND WHITE NOISE. CEPSTRALDEVIATIONS
ARE ESTIMATED USING 25-AND 100-HLTER FILTERBANKS FOR1000
INSTANCES OF THEPHONEMES=aa= AND =sh=. SMALLER VALUES
INDICATE ENHANCED ROBUSTNESS TONOISE.

index for babble [Fig. 4(a),(d)], car [Fig. 4(b),(e)], andhite
noises [Fig. 4(c),(f)]. The deviations of the MTE- and MSE-
based features are, on average, smaller, outperforming the
MFCC baseline. Further, MSE-based and MFCC features
present very similar performance for some of the noise types
The differences are more pronounced when wider lters are
employed (25-Iters), as shown in Table I. As expected,
the MTE-based features present smaller deviations than the
MSE-based features for volvo noise, as shown in Fig. 4(e)
and, especially, in Fig. 4(b). For babble and white noise all
three front-ends perform similarly. This is consistenthatite
mel-energy coef cient deviations presented in the presiou
section. Similar results are also reached in the case of the
MTE/MSE cepstral coef cient scheme for other phonemes.
Concluding, we observe that the MTE-based features out-
perform, on average, all other studied features, i.e., M&ECC
and MSE-based cepstral coef cients, for most phonemes and
types of noise, see Table I. These differences are especiall
pronounced for lowpass noises, e.g., car (volvo) noisallyin

the proposed features present signi cantly smaller dewiat
w.r.t. the clean feature version, compared to the MFCC+base
deviation values, according to Table |, providing addiéibn

In Fig. 4, the normalized RMS cepstral deviations (in
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Fig. 4. Normalized RMS cepstral deviations (in dBs) comgduteger 1000 instances of the phoneme /aa/ extracted from €T Tdatabase. Results shown
as a function of coef cient index for babble (in (a),(d)),ra@n (b),(e)) and white (in (c),(f)) noise at an avera8BlR =5 dB. The lterbank consists of
(a)-(c) 25 and (d)-(f) 100 mel-spaced, Gammatone ltershwited overlap of 50%. Smaller values indicate enhanced stiess in noise.

robustness to the feature extraction process. for the TIMIT+Noise database are shown in Fig. 6 for Gabor
- _ and Gammatone Iterbanks, and MSE/MTE estimation. Fi-
D. Speech Recognition Experiments nally, the PLP [16] and MFCC [20] features (extracted using

Next, speech recognition performance is evaluated whtre HTK platform [35]) provide the baseline performancd. Al
the following parameters vary: lter shape, energy schemtgatures are normalized after removing their long-termstrep
number and bandwidth of the Iters. Word and phone errgneans (CMS). Plots in Fig. 5 have different y-axis ranges to
rates are estimated for various types and levels of noisg, ifurther enhance their readability.

the Aurora-3 (Spanish Task), Aurora-4, and the TIMIT+Noise according to the experimental results, moderate Iter band
databases, respectively. The results are presented aStmm”widths, i.e., the middle-part of the graphs in Fig. 5 and the
of the rst lter ERB value and the total number of lters migdie column in Fig. 6 seem to be more robust to different
(the Iter bandwidth overlap percent is a dependent par@metaining/testing mismatches and yield the higher recagmit
taking values betweel?ns(t)% 85%). For example, for the rates across all noise scenarios. For the case of low and
leftmost Fig. 6(a), thel™ Iter ERB takes values between medium mismatch between training and testing conditions,
22 44 Hz that correspond to ERB overlap (with the adjaceril_te_, the WM and MM scenarios, the MTE- and MSE-based
lters) percent of30% 85% The ERB overlap percent isfeatyres appear to always outperform the baseline MFCC
xed across all lters of the lIterbank. In the case of thefeatyres, providing enhanced immunity to noise. Both fiestu
100- lter Iterbanks in Figs. 5, 6(c), the Iter ERB valuesre  perform similarly for reasonable values of the Iter band-
set proportional to tho?e of the 25- and 50- Iter Iterbanksyigths. However, for the high mismatch task (HM), the perfor
(when examining theil* Iters and the ERB overlap percent mance of the MSE and MTE front-ends diverge signi cantly,
ranges irB0  85%). Results (word accuracy) for the Aurora-3,specially when wider Iters are employed (the right-masttp
database are shown in Fig. 5 for Gammatone lterbanks agglthe plots or when 25- Iter Iterbanks are employed, Table
for MSE/MTE estimatiof®. Further, results (phone accuracy)|). The MSE-based features present an additid28brelative
15The results for the word-level LV-ASR task (Aurora-4) appéa be improvement (for moderate I'Fer bandwidths) compared te th
similar to those of the Aurora-3 task and are omitted due ¢k af space. ~MTE-based features an8i0% improvement when compared
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Spanish Task, WM Scen. with 100 Filters and Var. Filter Overlap to the presence of the high-frequency noise componentsein th

low SNR conditions, as shown in Fig. 2. On the other hand,
ASR performance for both features (MTE- and MSE-based
features) is similar, on average, for the case of narrowslte
(the case of 100- lter lterbanks, Table II).
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Word Accuracy (%) of Aurora-3, Spanish Task |

Correct Word Accuracies (%)

891 7 Scenario| WM MM HM Aver. Rel.
88l 4 Features Impr.
87~ - -MTE E Aurora Frontend (WI007)] 92.94 | 80.31 | 51.55| 74.93 [ -37.75
asll T hes i MFCCy 93.68 | 89.46 | 62.50 | 81.80 -
PP PLPy 94.97 | 89.10 | 53.68 | 79.25 | -14.01
16 27 38 49 60 71 82 93 104 115 126 137 148 159 170 181 192 MSE-Basegi (25 Fllt) 9420 8952 7805 8726 3000
(a) MSE-Basey (100 Filt) | 94.65 | 90.95 | 70.20 | 85.30 | 19.23
Spanish Task, MM Scen. with 100 Filters and Var. Filter Overlap MTE-Basey (25 Filt.) 9422 8021 | 71.94 | 85.12 | 18.24
T T T T T T T T MTE-Basey (100 Filt) | 94.75 | 90.80 | 71.76 | 85.80 | 20.33
%r b y Features are Normalized using Cepstral Mean SubtractidfiSjC
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TABLE I
WORD ACCURACY (%) ON THE AURORA-3 (SPANISH TASK) DATABASE
USINGHTK. THE FILTERBANKS CONSIST OF25-0OR 100-HLTER
GAMMATONE FILTERS. RESULTS FORFOUR FEATURE SETS ARE
PRESENTED MFCC (BASELINE), PLP, MTE-AND MSE-BASED
CEPSTRALCOEFS IMPROVEMENTRELATIVE TO MFCC (WITH CMS)
BASELINE.

©

@
T
I

©

N
T
I

©

2
T
I

©
S

=
©

)
=3

)
2

Correct Word Accuracies (%)

6 27 3‘8 49 60 71 82 93 104 115 126 137 148 159 170 181 192 NeXt' In Flg _6' the performance Of MSE/MTE IS InVGStI-
(b) gated as a function of both the number of employed lters and
Spanish Task, HM Scen. with 100 Filters and Var. Filter Overlap their Shapes in the TIMIT+Noise task. The Iter Shape does
S S N A L not signi cantly affect the ASR performance, provided that
the corresponding ERB bandwidths are normalized, comgarin
the plots in Figs. 6(a)-(b). It, also, appears that the numbe
of Iters employed is not an important factor, as well; sianil
results are obtained for different Iterbanks employing 280
Iters, when the corresponding Iter bandwidths are equal-
ized"’, Fig. 6(b)-(c). Examining the relative performance of the
MSE- and MTE-based features, the MTE clearly outperforms

o
=]
T
I

Correct Word Accuracies (%)
&
L

Ss’fgégc 1 the other features for the case of volvo (car) noise, eslpecia

ol | when Iters present large ERB bandwidths. For other noise

O e eRB iy types, the MSE- and MTE-based features display similar
© performance, Table lll. The differences in performance are

, _more pronounced in the case of wide lters, e.g., when using
Fig. 5. Word accuracy for the cepstral MTE and MSE-basedifeat(using

CMS) for 100 Gammatone lters, in the Aurora-3 Spanish datsh The a 25- lter lterbank.
horizontal axis displays th&RB Valuesof the 1 lter. These values are  Overall, if we x the energy estimation scheme, the pa-

equalized (sequentially) to ths! Iter ERB values of the 25- and 50- lter ; ;
lterbanks (when the Iter overlap percent ranges3@ 85%). Results for rameter that mamly affects ASR performance is the lter

three training/testing mismatched scenarios are shoWnHigh Mismatch Pandwidth, rather than the bandwidth overlap percertfage

(HM), (b) Medium Mismatch (MM), (c) Well Matched (WM). The baline the shape of the Iters (as long as their ERBs are normalized)

MFCC and PLP results are shown as dashed lines. There is also a relatively wide range of Iter ERBs (from
approx. 50 Hz to 120 Hz) where good ASR performance is

) , achieved. Thus, the word error rates seem to mostly depend
to the baseline results (obtained by the ETSI WIO07 fron(tj—n the ERB values, exhibiting a stable performance for a

end) Table II. These improvements are reached when the Itgty, range of ERB values. Similar results were obtained

bandwidths assume reasonable values, i.e., the band“ﬂdtq/vﬂen additive noise was added to the noise-corrupted TIMIT

the rst Iter is less than 130 Hz. As detailed above, increds database

Iter bandwidths lead to differences between the two energy

estimation schemes. In the case where the Iter bandwi@ths ( 17pp,e overlap percentage has been altered accordingly toresnider
in the right-most part of the plots) take very large valies iters in the case of the 100- Iter lterbank. Thel® Iter ERB values are

the MSE-based features Outperform the MTE-based ones Gg@allzed (sequentially) to the! Iter ERB values of the 25- and 50- Iter
Iterbanks (when the Iter overlap percent ranges30 85%), and the rest
of the ERB values are increased proportionally.
16The 1st lter bandwidth in the Iterbank takes values greatean 140 18Note that the range of overlap remains the same for the 25D, lter
Hz. experiments, ranging froB5 85%, Fig. 6.



| Phone Accuracy (%) of TIMIT+Noise Task |

Scenario | Babble | White Car Aver. Rel.
Features Impr.
MFCC 36.14 | 24.48 | 54.73 | 38.45 -
PLP 38.36 | 30.23 | 49.39 | 39.33 | 2.29
MSE-Based (25 Filt.) 39.95 | 33.22 | 46.86 | 40.01 | 4.06
MSE-Based (100 Filt.)] 42.53 | 33.69 | 55.88 | 44.03 | 14.51
MTE-Based (25 Filt.) 40.83 | 33.52 | 51.84 | 42.06 | 9.38
MTE-Based (100 Filt.)| 42.33 | 32.57 | 56.76 | 43.89 | 14.15

All Features are Normalized using Cepstral Mean Subtradi@VIS) |

TABLE IlI
PHONE ACCURACIES(%) ON THE TIMIT+N OISE(ADDITIVE BABBLE,
WHITE OR CAR NOISES) DATABASE. THE FILTERBANKS CONSIST OF25-
OR 100-HLTER GAMMATONE FILTERS. IMPROVEMENT ISSHOWN
RELATIVE TO THE MFCC (WITH CMS) BASELINE.

(1]

VI. CONCLUSIONS- DISCUSSION 2

We have investigated four key parameters in the featur[g]
extraction process, namely: Iter bandwidth, lter bandith
overlap, number of lters and the energy computation scheme
We have also examined their impact on ASR performancg]
for three different recognition experiments. The presgnte
results are supported by a theoretical analysis of the i@&@pst
coef cients estimation error in noise. Overall, the equévd
rectangular Iter bandwidths and the energy estimatiorescé
appear to be two of the most signi cant parameters determiri6]
ing ASR performance. According to the presented ndings,
ASR performance can be predicted for a particular choice gf)
Iter bandwidth range and energy estimation scheme when
the relative spectral energy distributions of signal anéseo (8]
are considered.

In more detail, the performance of the averaged energy
estimation scheme is mainly a function of the relative séct [9
energy content of the noise vs. the speech input signal, when
examined within the Iter passbands. The proposed gend}0l
alized cepstral features are directly related to theseggner
distributions. Therefore, it is of great importance to eBsu(i1]
a robust and efcient energy computation process. Energy
estimation errors propagate to the cepstral coef ciergsyall. [12]
The proposed noisy cepstral coef cient deviations (déwia
from the clean case) are, on average (RMS values), smaller
than those of the MFCCs. This is due to the energy scher[l%3
and the wider Iters employed.

In this context, it is shown that features using lters of!4l
different spectral shape present similar performance when
their effective Iter bandwidths are kept equal, regardles
of their design parameters, for low and medium mismatd!
training/testing scenarios. For high mismatch, the energy
computation scheme is usually the most important factor
affecting performance; the signal vs. noise spectral cunte!?]
should be rst analyzed, selecting the most appropriategne 18]
computation scheme.

Finally, similar trends and conclusions can be drawn wh?{\g
advanced signal denoising and feature equalization tqabsi ]
are applied in combination with the feature extraction sthe
as shown in [36]. There, the performance improvements app&al
to be additive on top of the signal and feature enhancement
techniques, such as Wiener Itering and Parameter Equaliza

11

tion (PEQ). This is particularly important in building rotu
ASR systems.

In future work, we plan to extend our work to the design
of Iterbanks that optimize ASR performance under adverse
recording conditions and under time-varying noise.
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Fig. 6. Phone accuracy for cepstral features based on MTE/stBemes tested on the TIMIT+Noise database (with CMS)ed kifferent scenarios are

investigated: (a) Gabor Mel-Filterbank and (b) Gammatore-Miterbank (for both cases the number of lters is 100,d8@5 for each of the three columns,
respectively). The horizontal axis displays tB&B Valueof the 15t Iter, for ERB overlap ranging in30  85%. (c) Mel-spaced, 100-Filter Gammatone
Filterbank and ERB values proportional to those of the 25 8+ Iter Iterbanks (when the ERB percent ranges30 85%). Results are shown for three
noise types: babble, white and volvo (car).



